
THE CRYPTOGRAM Winter 1993

COMPUTER

SUPPLEMENT #17

In this issue:

CAESAR SOLUTIONS — KARL has a QuickBASIC program to display Caesar solutions.

BACONIAN CYPHER AID REVISITED — G4EGG has some extensions to THE DOC’s
program.

PRETTY GOOD PRIVACY — A public key encryption system is now available as freeware,
including source code.

AN AID IN FINDING VIGENERE KEYWORDS — G4EGG has a program to help with
Vigenere cyphers.

THE POLLUX CIPHER — BOATTAIL has a Pascal program to solve Pollux ciphers by
trial and error.
BEGINNER’S GUIDE TO THE ENVIRONMENT — An introduction to the MS-DOS en-
vironment.
CONS WITH CRYPTO — DAEDALUS gives a step-by-step method of creating cons using
BITSIFTER’s program CRYPTO.

Plus: News and notes for computerists interested in cryptography, and cryptographers in-
terested in computers.

Published for the AMERICAN CRYPTOGRAM ASSOCIATION

INTRODUCTORY MATERIAL

The ACA and Your Computer (1p). Background on the ACA for computerists. (As printed in ACA and
You, 1988 edition; [Also on Issue Disk #11]

Using Your Home Computer (1p). Ciphering at the ACA level with a computer. (As printed in ACA and
You, 1988 edition).

Frequently Asked Questions (approx. 20p) with answers, from the Usenet newsgroup sci.crypt.

REFERENCE MATERIAL

BASICBUGS - Bugs and errors in GWBASIC (1p). [Also on Issue Disk #11].
BIBLIOG — A bibliography of computer magazine articles and books dealing with cryptography (2p).
(Updated August 89). [available on Issue Disk #11].

CRYPTOSUB - Complete listing of Cryptographic Substitution Program as published by PHOENIX in
sections in The Cryptogram 1983–1985. (With updates from CS #2,3). [available on Issue Disk #3].

DISKEX - A list of programs and reference data available on disk in various formats (Apple—Atari—
TRS80—Commodore—IBM—Mac). Revised March 1990.

ERRATA sheet and program index for Caxton Foster’s Cryptanalysis for Microcomputers (3p). (Reprint
from CS #5,6,7 and 9) [disk available from TATTERS with revised programs].

BACK ISSUES

$2.50 per copy. All back issues prior to 13 have been exhausted, and are awaiting reprinting. Contact the
Editor for current availability.

ISSUE DISKS

$5 per disk; specify issue(s), format and density required. All issues are presently available on two IBM
High Density 1.2M disks, archived with PKZIP. For other disk formats, ask. Disk One — Issues 1 - 10; Disk
Two — issues 11 to current. Disks contain ONLY programs and data discussed in the issue. Programs are
generally BASIC or Pascal, and almost all executables are for IBM PC–compatible computers. Issue text in
TEX format is available for issues 16 to current. Available from the Editor.

TO OBTAIN THESE MATERIALS

Write to: Or via Electronic Mail:

Dan Veeneman dan%decode.UUCP@uunet.uu.net

PO Box 2442 or

Columbia, Maryland uunet!anagld!decode!dan

21045-2442, USA.

Allow 6–8 weeks for delivery. No charge for hard copies, but contributions to postage appreciated. Disk
charge $5 per disk; specify format and density required. ACA Issue Disks and additional crypto material
resides on Decode, the ACA Bulletin Board system, +1 410 730 6734, available 24 hours a day, 7 days a
week, 300/1200/2400/9600 baud, 8 bits, No Parity, 1 stop bit. All callers welcome.

SUBSCRIPTION

Subscriptions are open to paid-up members of the American Cryptogram Association at the rate of US$2.50
per issue. Contact the Editor for non-member rates. Published three times a year or as submitted ma-
terial warrants. Write to Dan Veeneman, PO Box 2442, Columbia, MD, 21045-2442, USA. Make checks
payable to Dan Veeneman. UK subscription requests may be sent to G4EGG.

CHECK YOUR SUBSCRIPTION EXPIRATION by looking at the Last Issue = number on your
address label. You have paid for issues up to and including this number.

Winter 1993 1

CAESAR SOLUTIONS

KARL

Microsoft’s QuickBASIC is a joy to use after
years of working with the old versions of stan-
dard BASIC, and its capability for compila-
tion as DOS-executable files is dessert. The
CAESAR03.BAS source code herewith is one of
my first attempts to wean myself away from
old BASIC; its speed of execution was almost
unbelievable when I first ran it, compared to
its old-BASIC counterpart. After compiling it
to the DOS-EXE version, it was so fast as to
appear instantaneous.

A line-by-line study of the source-code with
its attendant annotation affords a step-by-
step description of program execution, due to
Quick-BASIC’s top-down construction. The
DESCRIPTION and LIMITATIONS para-
graphs explain the program in general.

Note that between the Begin: END lines I
have inserted a REM symbol before the RUN

"CRYPTO.BAS" line. This line would normally
return the action to the MENU program, from
which I can call any one of 22 programs (so far)
of my working computer-crypto tools, as in-
cluded in my book, COMPUTER CRYPTOL-
OGY: Beyond Decoder Rings (Prentice-Hall,
1988). Because QuickBASIC will run both old
BASIC versions as well as the new, I can con-
tinue to use the MENU-driven toolset while
rewriting the programs one by one in the new
format.

In QuickBASIC, sub-procedures are not
equivalent to sub-routines as in old BASIC.
They stand alone, and their variables are
immune from values used on other parts of
the program, unless special indications to
make the usable elsewhere are included. Sub-
routines may be used in both the main module
and the sub-procedures, although the line may
not be crossed — that is, a subroutine appear-
ing in a sub-procedure cannot be called from
the main module, for instance.

Program action is controlled step-by-step by

the lines between Begin: END (the fourth to
ninth lines of the program proper). The first
command is GOSUB OPENER. This transfers ac-
tion to line 10, a subroutine almost like old
BASIC, in that, when its action is completed,
command is transferred back to the line fol-
lowing GOSUB OPENER.

The OPENER: line activates the screen and
printer as “devices,” in the same manner as
files are opened. The next set of lines continue
the opening action by presenting screen infor-
mation in the form of a short page of introduc-
tory text each time the program is activated.
The final line of this subroutine clears the
screen and ends the subroutine action. Action
now returns to the next line between Begin:

END — CALL Processor(Prnt\$()).

Sub-procedure CALL Processor(Prnt$())

becomes the commanding procedure. Its main
loop, WHILE Key$ <> "^" WEND, will “play”
over and over until you enter a caret at the
prompt, at which instant command reverts to
the next line between Begin: END, which is
GOSUB CLOSER. The closer does what the name
implies.

Since we are not yet ready to close, the
first line within the action loop of the sub-
procedure calls for screen-print of the legend,
or prompts, via the Legend: RETURN subrou-
tine within the procedure. This is another in-
teresting but not often used feature of Quick-
BASIC; a subroutine is permissible within a
sub-procedure. Note that physically the sub-
routine is the last few lines of the program (not
a general requirement), though they are NOT
the final lines executed.

The DO LOOP sequence is next, with its first
action being a sub- DO LOOP that repeats un-
til a key is touched. The SELECT CASE / END

SELECT sequence acts in much the same way as
multiple IF - THEN - ELSE sequences. Note

2 Computer Supplement 17

that the action items at each CASE are the sym-
bols indicated in the prompt line of screen in-
cluding a space-bar input.

The screen is split vertically following the key-
board input of a letter. An endless “belt” of A
to Z’s is generated. Note the line-by-line REM’d
annotations leading to the splitter, which uses
the MOD function limiting the character print-
ing to 39 items. Another DO LOOP sequence
kicks in, fully annotated for analysis. Quick-
BASIC uses a LOCATE x,y instead of the old
BASIC PRINT @.

The parameters for LOCATE are set within the
FOR-NEXT loop, altered as required by key-
board input within the overriding DO-LOOP se-
quence and the X1 - X2 values.

If the “?” is entered, the SELECT CASE /
END SELECT function calls the Sub-procedure
HPrnt(Prnt$()). This is not often used since
the program is primarily for revealing one or
two words, as in The Cryptogram, Vol. LVIII,
No. 4, page 22, Patristocrats cribs-within-
parentheses. I entered the ciphertext from the
cover of this issue on the off-chance that it
might be a Caesar substitution cipher, and
sure enough, it is. The first seven words are
revealed as the last horizontal line, Block 2,
of the screen-print of this program, herewith.
The input appears as the top line, Block 1.
Spaces were arbitrarily entered at the end of
each word for clarity; ordinarily the cipher-
and plaintext would appear as solid lines.

DPNF FBSMZ BOE TUBZ MBUF TQFOE ZPVS QCAS SOFZM OBR GHOM ZOHS GDSBR MCIF

EQOG GCTNA CPF UVCA NCVG URGPF AQWT RDBT TPGAN PCS HIPN APIT HETCS NDJG

FRPH HDUOB DQG VWDB ODWH VSHQG BRXU SECU UQHBO ODT IJQO BQJU IFUDT OEKH

GSQI IEVPC ERH WXEC PEXI WTIRH CSYV TFDV VRICP REU JKRP CRKV JGVEU PFLI

HTRJ JFWQD FSI XYFD QFYJ XUJSI DTZW UGEW WSJDQ SFV KLSQ DSLW KHWFV QGMJ

IUSK KGXRE GTJ YZGE RGZK YVKTJ EUAX VHFX XTKER TGW LMTR ETMX LIXGW RHNK

JVTL LHYSF HUK ZAHF SHAL ZWLUK FVBY WIGY YULFS UHX MNUS FUNY MJYHX SIOL

KWUM MIZTG IVL ABIG TIBM AXMVL GWCZ XJHZ ZVMGT VIY NOVT GVOZ NKZIY TJPM

LXVN NJAUH JWM BCJH UJCN BYNWM HXDA YKIA AWNHU WJZ OPWU HWPA OLAJZ UKQN

MYWO OKBVI KXN CDKI VKDO CZOXN IYEB ZLJB BXOIV XKA PQXV IXQB PMBKA VLRO

NZXP PLCWJ LYO DELJ WLEP DAPYO JZFC AMKC CYPJW YLB QRYW JYRC QNCLB WMSP

OAYQ QMDXK MZP EFMK XMFQ EBQZP KAGD BNLD DZQKX ZMC RSZX KZSD RODMC XNTQ

PBZR RNEYL NAQ FGNL YNGR FCRAQ LBHE COME EARLY AND STAY LATE SPEND YOUR

< ^ > to Quit, < ? > to print, < # > to clear screen, Space-Bar OK

Output of CAESAR03.BAS, with Cryptogram ciphertext on the upper-right line and a solution on
the bottom-right.

Winter 1993 3

CAESAR03.BAS

REM filespec: CAESAR03.BAS a CRYPTOLOGICAL PROGRAM

’DESCRIPTION:

’ This program has been adapted from one of the programs in the book,

’ "COMPUTER CRYPTOLOGY: Beyond Decoder Rings," by Karl Andreassen, Prentice

’ Hall, 1989." The program was originally prepared in TRSDOS BASIC, a

’ proprietary version of MicroSoft BASIC. Karl Andreassen is a pseudonym

’ of Waldo T. Boyd, and this program and the book is copyright in the

’ latter family name.

’ The program decrypts simple substitution-type ciphers and presents

’ 25 "solutions." One of these solutions wo;; be in plain language, called

’ "plaintext" by cryptologists. It will likewise accept plain language input

’ at the keyboard, converting it to 25 Caesar versions of straight

’ substitution ciphertext, of infinite length.

’LIMITATIONS:

’ Presentation is in vertical columns. Because most screens are used

’ with 24 horizontal lines while the alphabet contains 26 alpha characters,

’ the screen is divided into two blocks of 13 characters each, which per-

’ mits full-screen viewing of the entire alphabet. The printer function

’ presents the original and 25 lines full length.

’ The program and its output is elementary since it is not intended

’ for more than a few minutes’ use by cryptanalysts seeking to test short

’ phrases or keywords during work with more elaborate programs. Due to

’ the double block format, upon reaching the half-screen position the

’ screen replaces older letters with those more recent. Thus, if working

’ with longer text, frequent print-outs should be made, and the screen

’ cleared after each printing.

’ASSUMPTIONS:

’ A mono-screen or color screen with mono capability is available.

’ Although a print-out function is provided, it is not likely that

’ it will be often used in view of the elementary nature of this program.

’***********************

DECLARE SUB Processor (Prnt$())

DECLARE SUB HPrnt (Prnt$())

DIM Prnt$(26, 80)

Begin:

GOSUB OPENER

CALL Processor(Prnt$())

GOSUB CLOSER

RUN "CRYPTO.BAS"

END

OPENER:

CLS

OPEN "SCRN:" FOR OUTPUT AS #1

OPEN "LPT1:" FOR OUTPUT AS #2

4 Computer Supplement 17

LOCATE 2, 1

PRINT #1,

PRINT #1, TAB(25); STRING$(30, "=")

FOR x = 1 TO 5

PRINT #1, TAB(25); "||"; TAB(53); "||"

NEXT x

LOCATE 5, 33

PRINT #1, "QUICK TEST FOR"

LOCATE 6, 38

PRINT #1, "CRIBS"

LOCATE 7, 31

PRINT #1, "by Karl Andreassen"

LOCATE 9, 25

PRINT #1, TAB(25); STRING$(30, "=")

PRINT #1,

PRINT #1, TAB(12); "This program will print letters on-screen in two vertical"

PRINT #1, TAB(12); "descending orders. Input from keyboard will be either"

PRINT #1, TAB(12); "plain language or ciphertext. If the ciphertext has been"

PRINT #1, TAB(12); "created by straight substitution without added complication"

PRINT #1, TAB(12); "the plain language will appear on a subsequent horiz. line."

PRINT #1,

PRINT #1, TAB(12); "ENTER LETTERS ONLY: NO PUNCTUATION PERMITTED IN TEXT."

PRINT #1,

PRINT #1, TAB(12); "(Touch <ENTER> to begin.....all subsequent"

PRINT #1, TAB(12); "letters will appear with alphabetic extensions."

PRINT #1,

INPUT "", du$

CLS

RETURN

CLOSER:

CLOSE #1

CLOSE #2

RETURN

SUB HPrnt (Prnt$())

FOR Row = 1 TO 13 ’==Lprint first block

FOR Col = 1 TO 40

PRINT #2, Prnt$(Row, Col);

NEXT Col

PRINT #2,

NEXT Row

FOR Row = 1 TO 13 ’==Followed by 2nd block

FOR Col = 41 TO 80

PRINT #2, Prnt$(Row, Col);

NEXT Col

PRINT #2,

NEXT Row

PRINT #2, ’==Single space between printings

END SUB

Winter 1993 5

SUB Processor (Prnt$())

’

WHILE Key$ <> "^"

GOSUB Legend ’==Screen-print the option legend

DO ’==Loop while non-alpha input

DO ’==Keyboard input loop

Key$ = INKEY$

LOOP WHILE Key$ = ""

SELECT CASE Key$

CASE " " ’==Space-bar is special case, handle...

EXIT DO ’==...outside the loop

CASE "^"

EXIT SUB ’==End of program, close devices

CASE "?"

CALL HPrnt(Prnt$()) ’==Printer call

CASE "#"

CLS ’==Hot restart with clear screen

GOSUB Legend ’==Refresh the footnote

X3 = 1 ’==Reset the determinants

P1 = 1

CASE ELSE

Key$ = UCASE$(Key$) ’==Continue program if alpha charac.

END SELECT

LOOP WHILE ASC(Key$) < 65 OR ASC(Key$) > 90

Nr = ASC(Key$) - 66 ’==Convert incoming letters to ASCII

X3 = 1 ’==Begin upper-left Block 1

P1 = P1 + 1 ’==Prep for vertical screen printing

P = P1 ’==Store P1 before shift to Block 2

P1 = P1 MOD (39) ’==Split the screen horizontally

DO

SELECT CASE X3

CASE 1 ’==Column 1 loop params.

X1 = 1 ’==Upper-left corner of screen block 1

X2 = 13 ’==Lower-left corner of screen block 1

CASE 2 ’==Column 2 loop params.

X1 = 14 ’==Upper-left corner of screen block 2

X2 = 26 ’==Lower-left corner of screen block 2

P = P + 40 + P1 ’==Block designator

END SELECT

FOR x = X1 TO X2 ’==Obtain 1/2 alphabet builder

C = Nr + x ’==Get progressive alpha params.

M = C MOD (26) + 1 ’==Endless A to Z beltline

P3 = INT(P / 80) ’==Row determinant for screen location

P4 = INT(P - P3 * 80) + 1 ’==Column " " " "

P3 = P3 + 1 ’==Next row

6 Computer Supplement 17

LOCATE P3, P4 ’==Row, column cursor locator

IF Key$ = " " THEN ’==A space is a special case

PRINT #1, " ";

Prnt$(P3, P4) = " " ’==Load hardprint array with space

ELSE

PRINT #1, CHR$(M + 64); " "; ’==Print column of consec. letters

Prnt$(P3, P4) = CHR$(M + 64) ’==Load hardprint array with letter

END IF

P = P + 80 ’==Prep for new line

NEXT x

P = 0 ’==Reset print position flag

X3 = X3 + 1 ’==Xfer action to Block 2

P = P + 1

LOOP WHILE X3 < 3 ’==Start over at the top

WEND

Legend: ’==User convenience footnote

LOCATE 20, 1

PRINT #1, TAB(9); "< ^ > to Quit, < ? > to print, ";

PRINT #1, " < # > to clear screen, Space-Bar OK "

RETURN

END SUB

PRETTY GOOD PRIVACY

Pretty Good Privacy version 2.1 has been re-
leased. The public domain version of the
public key software is available from several
archive sources.

From the documentation:

PGP (Pretty Good Privacy) version 2.1 —
RSA public-key encryption freeware for MS–
DOS, protects E-mail. Lets you communicate

securely with people you’ve never met, with no
secure channels needed for prior exchange of
keys. Well featured and fast ! Excellent user
documentation.

PGP has sophisticated key management, an
RSA/conventional hybrid encryption scheme,
message digests for digital signatures, data
compression before encryption, and good er-
gonomic design. Source code is free.

Winter 1993 7

BACONIAN CYPHER AID REVISITED

G4EGG

THE DOC’s programme and article (CS #7,
page 12) concludes with an invitation to ex-
tend the programme. The change to allow in-
teractive use is trivial, and one version is given
herewith. (The programme differs from the
original in line numbering and some cosmetic

detail. Also whilst making the mods., several
example cons. were used, and so the included
example is also different from that chosen by
THE DOC.) In use, selecting the default ex-
ample gives the screen:

BACON CYPHER AID by M. Dale.

Enter UPPER case, letters only. (F) if data on disc

BRAIDPROXYFAIRSGRAINJOKERDROVESTOVEMOVEDFROZEBOUTSZILCHSHARPSNOWYTROOPBONESDECA

YBROWNVEINSSTONEDONORGIVENWORSTSQUADFLAMEMOOSEBAYOUINEPTSOUSEDROSSZEBRA

Enter crib in UPPER case without spaces:

GOOD

..............................

ABCDEFGHIJKLMNOPQRSTUVWXYZ (1)

baa bb b aab aabb b ba

BRAID PROXY FAIRS GRAIN JOKER DROVE STOVE MOVED FROZE BOUTS ZILCH SHARP SNOWY

aabb baa b abbaa abba a a aa aba a aaa aabba abbab abbab aaabb

N G O O D

TROOP BONES DECAY BROWN VEINS STONE DONOR GIVEN WORST SQUAD FLAME MOOSE BAYOU

baaab aaa a abb aaaba baa abaa aaaa ab a baaab a bb abb aaa abbab

S C S O

INEPT SOUSE DROSS ZEBRA

ba bb aaba aaaa a aab

(D)one, (L)ook more, (N)ew crib, (A)dd to crib: ?

It is as well to “Look more”, and find all pos-
sible positions of the crib. The most likely is
noted, and the selection “New crib” used to re-
start. In this case, there is only one position
for GOOD. Adding to crib is not restricted to

extending the existing letters. Any word or
letter in any position may be used. Now look
at group 27. This must be a “Z” or “U/V”.
“U” is most likely, so “Add to crib” the “U”
and get:

Enter crib in UPPER case without spaces: U

..............................

ABCDEFGHIJKLMNOPQRSTUVWXYZ (1)

baa bb b aab aabb bbba

BRAID PROXY FAIRS GRAIN JOKER DROVE STOVE MOVED FROZE BOUTS ZILCH SHARP SNOWY

8 Computer Supplement 17

aabb baabb abbaa abba a a aa aba a aaa aabba abbab abbab aaabb

U N G O O D

TROOP BONES DECAY BROWN VEINS STONE DONOR GIVEN WORST SQUAD FLAME MOOSE BAYOU

baaab aaa a abb aaaba baa abaa aaaa ab a baaab a bb abb aaa abbab

S C S O

INEPT SOUSE DROSS ZEBRA

ba bb aaba aaaa a aab

(D)one, (L)ook more, (N)ew crib, (A)dd to crib: ?

The “U” has appeared in the second group; it
was 27 that was required. So just select “Look
more”, and all is well. Further examination of
the groups offer several possibilities, but to il-
lustrate the next point, chose group 18. This
must be “E” or “W”. Again the vowel is more

likely, so add “E” ? Well, no. “E” is a com-
mon letter, and may well fit in several places.
To avoid a sequence of “Look more”’s, enter
a group of letters, some existing, to identify
the required group. Here CEI will identify the
spot. The screen is now as:

Enter crib in UPPER case without spaces: CEI

..............................

ABCDEFGHIJKLMNOPQRSTUVWXYZ (1)

baaba bb b aab aabbab ba

BRAID PROXY FAIRS GRAIN JOKER DROVE STOVE MOVED FROZE BOUTS ZILCH SHARP SNOWY

aabbb baa b abbaa abba a aa baaaa abaaa aaab aaaa aabba abbab abbab aaabb

H N R I G O O D

TROOP BONES DECAY BROWN VEINS STONE DONOR GIVEN WORST SQUAD FLAME MOOSE BAYOU

baaab aaaaa baabb aaaba aabaa abaaa baaaa abaaa baaab a bbb abb a aaaa abbab

S A U C E I R I S O

INEPT SOUSE DROSS ZEBRA

baabb aabaa baaaa aaaab

U E R B

(D)one, (L)ook more, (N)ew crib, (A)dd to crib: ? A

(Don’t forget, a U can be a V) And so on.
(Group 23 may be next to complete, and then
24 and 25) Several cons. have been tried, with

complete success. Good luck with all sols.
How did it work out?

Winter 1993 9

BACONAID.BAS

100 ’ BACON/AID by Martin Dale, Oct 86

110 DATA "BRAIDPROXYFAIRSGRAINJOKERDROVESTOVEMOVEDFROZEBOUTSZILCHSHARPSNOWY

TROOPBONESDECAYBROWNVEINSSTONEDONORGIVENWORSTSQUADFLAMEMOOSEBAYOU

INEPTSOUSEDROSSZEBRA","GOOD"

120 SP$(0)=SPACE$(78):SP$(1)=SP$(0):AB$="ABCDEFGHIJKLMNOPQRSTUVWXYZ":W=0

130 T$=CHR$(12)+SPACE$(29)+"BACON CYPHER AID by M. Dale."

:U$=SPACE$(29)+STRING$(16,"-")

140 K=0:PRINT T$:PRINT U$:PRINT "Enter UPPER case, letters only. (F) if data on disc"

150 LINE INPUT CT$:IF CT$="" THEN READ CT$:PRINT CT$

160 IF CT$<>"F" THEN 190

170 PRINT:INPUT "Name of file holding data ";N$:I=INSTR(N$,".")

:IF I>0 THEN N$=LEFT$(N$,I-1)

180 N$=N$+".CT$":OPEN "I",#1,N$:INPUT #1,CT$:CLOSE #1:PRINT CT$

190 I=0

200 I=I+1:J=ASC(MID$(CT$,I,1)) AND 223

:IF J<65 OR J>90 THEN CT$=LEFT$(CT$,I-1)+MID$(CT$,I+1)

210 IF I<LEN(CT$) THEN 200

220 L=LEN(CT$):IF L<>INT(L/5)*5 THEN PRINT "ERROR in entry. Try again."

:FOR I=1 TO 2000:NEXT:GOTO 140

230 C=0:LOCATE 7,1:PRINT SP$(0)+SP$(0)+SP$(0):LOCATE 7,5

:PRINT "Enter crib in UPPER case without spaces: ";

240 LINE INPUT TP$:IF TP$="" THEN READ TP$:PRINT TP$

250 PRINT SPACE$(34):TL=LEN(TP$)*5:PT$=""

260 FOR N=1 TO TL/5:CH=ASC(MID$(TP$,N,1))-65:IF CH>9 THEN CH=CH-1

:IF CH>20 THEN CH=CH-1

270 FOR K=4 TO 0 STEP -1:IF (CH AND 2^(K))>0 THEN PT$=PT$+"b" ELSE PT$=PT$+"a"

280 NEXT:NEXT

290 FOR M=1 TO L-TL+1 STEP 5:AL$=SP$(W):PN$=MID$(CT$,M,TL):PF=1

300 FOR K=1 TO TL:LT$=MID$(PT$,K,1):PS=ASC(MID$(PN$,K,1))-64

310 IF MID$(AL$,PS,1)=" " THEN AL$=LEFT$(AL$,PS-1)+LT$+RIGHT$(AL$,LEN(AL$)-PS)

320 IF MID$(AL$,PS,1)<>LT$ THEN PF=0

330 NEXT:IF PF=0 THEN 570 ELSE PB=1

340 BC$="":PRINT SP$(0):LOCATE 9,1:PRINT SP$(0):LOCATE 9,1

350 FOR Y=1 TO L STEP 5: PRINT ".";:P$=MID$(CT$,Y,5):CH$=""

360 FOR Z=1 TO 5:P=ASC(MID$(P$,Z,1))-64:CH$=CH$+MID$(AL$,P,1):NEXT

370 IF LEFT$(CH$,2)="bb" THEN PB=0:Y=L:GOTO 400

380 IF LEFT$(CH$,2)=" b" THEN MID$(CH$,1,1)="a"

390 BC$=BC$+CH$

400 NEXT:IF PB=0 THEN 570

410 LOCATE 10,1:PRINT SP$(0):C=C+1:PRINT AB$;TAB(30);"("C")":PRINT AL$:PRINT

420 FOR I=1 TO L STEP 65:CP$=MID$(CT$,I,65)

430 FOR J=1 TO LEN(CP$) STEP 5:PRINT MID$(CP$,J,5)" ";:NEXT:PRINT

440 B$=MID$(BC$,I,65)

450 FOR J=1 TO LEN(B$) STEP 5:PRINT MID$(B$,J,5)" ";:NEXT:PRINT

460 FOR J=1 TO LEN(B$) STEP 5:BN$=MID$(B$,J,5):CR=0

470 IF INSTR(BN$," ")>0 THEN PL$=" ":GOTO 510

480 FOR K=1 TO 5:IF MID$(BN$,K,1)="b" THEN CR=CR+2^(5-K)

490 NEXT

500 CR=CR+65:IF CR>73 THEN CR=CR+1:IF CR>85 THEN CR=CR+1

510 PL$=CHR$(CR):PRINT " "PL$" ";

520 NEXT:PRINT:NEXT

530 LOCATE 23,3:PRINT "(D)one, (L)ook more, (N)ew crib, (A)dd to crib: ";

10 Computer Supplement 17

:INPUT Q$:IF Q$="D" THEN RUN "MENU.BAS"

540 LOCATE 23,1:PRINT SP$(0):LOCATE 7,1:PRINT SP$(0):LOCATE 7,5

550 IF Q$="A" THEN SP$(1)=AL$:W=1:Z=1:M=260:GOTO 570

560 IF Q$="N" THEN W=0:Z=1:M=260:GOTO 570

570 NEXT:IF Z=1 THEN Z=0:GOTO 230

580 LOCATE 22,1:PRINT "Possible matches found ="C

590 INPUT " (D)one, (R)un new cypher, or (N)ew crib:";Q$:IF Q$="R" THEN RUN

600 IF Q$="D" THEN RUN "MENU"

610 IF Q$="N" THEN PRINT T$:PRINT U$:W=0:LOCATE 7,5:RESTORE:READ Z$:GOTO 230

620 LOCATE 23,1:GOTO 590

1993 ACA CONFERENCE

LANAKI

[Ed: I received this announcement from
LANAKI just prior to press time. Make your
plans now ! DMV]

Planning/Execution for the 1993 ACA con-
vention in New Orleans is well under way.

Please announce that the ACA conference has
been confirmed at the Airport Ramada Inn
on August 13–15, 1993 and 4 different hotels
are available as backups with varying rates.
New Orleans has something for everyone. The
Chamber of Commerce is helping LANAKI
and KNOAI plan extracurricular events for
spouse attendees. Licensed/bonded babysit-
ting will be available for those members with
children. Tours to the Zoo, Riverboat trips
around the city, NASA space shuttle visit are
just three of the attractions being offered for
this ACA blowout.

Continental Airlines has been designated by
the EB as the Official Airline of the ACA for
this Convention. The toll free number for
reservations under a very special ACA dis-
count agreement is 1-800-468-7022. KREWE
that fly to New Orleans from anywhere in
the world , booked via Continential, will re-
ceive discounts on all tickets purchased rang-

ing from 40% in the USA to 30% on Australia,
New Zealand, Japan and Philippines Inter-
national flights. All passengers will receive
1250 bonus miles on their frequent flyer pro-
gram. Discounts from Europe, South Amer-
ica, Canada, Mexico, and the Caribbean. So
this is the year to take your vacation and go
to the ACA convention ! LANAKI negotiated
this extraordinary agreement and has details.
Plan to come ! Give him an early indication
so that he can tailor convention activities to
meet your needs. If you have wanted to come
to the USA but thought it was too expensive,
this year presents the best opportunity at the
lowest cost.

A call for papers and presentations is officially
extended. Depending on how many papers are
received, LANAKI will bind or XeroxTM at no
cost a full set of conference papers for each
member of the KREWE who is interested.
Some papers will be submitted to Cryptolo-
gia for publication. Papers must be double-
spaced, typed and in English. If you can not
be at the convention, write the paper, submit
to LANAKI and he will have it presented pro-
fessionally on your behalf.

Winter 1993 11

AN AID IN FINDING VIGENERE KEYWORDS

G4EGG

The Vigenere cypher is a periodic, and de-
scribed in ELCY, page 108 and Practical
Cryptanalysis, Vol. V, page 4. After finding
the period, the next step is to determine the
keyword, and the accompanying programme
helps in this task. It is not too exhaustive to
test every possible substitution, and score the
results to find the best fit. High frequency let-
ters increase and low frequency ones decrease
the score. Then the highest rated are used
to pick out the keyword. The programme is
described below.

The first lines set up an example and the vari-
ables to be used. Lines 140 to 180 are just one
way to get the input of cypher text. Spaces
are removed by line 190. Line 200 gets the pre-
viously determined period, P. It is suggested
that 13 is the maximum value, but a 14 has

appeared, so change to 14 maximum ? Some
nested loops then:

1. split the cypher text into groups, by pe-
riod, each Pth letter in a group,

2. test each group (column) against an al-
phabet,

3. step through the alphabets for successive
testing,

4. and keep a score of ‘good’ fits and ‘bad’
letters.

Line 310 and onward selects the best
or highest scoring 5 substitutions and
prints them out in a block so that the
keyword may be inferred. A typical run
would show screens as:

The VIGENERE cypher - an aid in finding the keyword from cyphertext and period.

Enter text in UPPER case, letters only, no spaces,

(Just ’F’ if data is on disc)

Enter cypher text:?

At this stage, ENTER selects the default ex- ample, and gives the screen:

The VIGENERE cypher - an aid in finding the keyword from cyphertext and period.

Enter text in UPPER case, letters only, no spaces,

(Just ’F’ if data is on disc)

Enter cypher text:?

PRGRFESJXHRBVWECPEFTCECEEXEBYWAOYTAMOCIANEDWELIAOERTEEQUUNITIZWHCIQSETOMHFNGRI

SDXZYWQKRFESSLBGRENTPNZVSSRTEZLIOVXIBRVDYIZYNNLOLEOGOA (period 9)

Period (13 max)?

The period is entered. The maximum value of
13 may be exceeded if required. In this case,
the period is 9, so enter 9 and the programme
starts the tests. Just to show that something

is going on, a series of full stops (periods !) are
printed. These can be omitted, of course. On
completion, the final screen is:

12 Computer Supplement 17

The VIGENERE cypher - an aid in finding the keyword from cyphertext and period.

Enter text in UPPER case, letters only, no spaces,

(Just ’F’ if data is on disc)

Enter cypher text:?

PRGRFESJXHRBVWECPEFTCECEEXEBYWAOYTAMOCIANEDWELIAOERTEEQUUNITIZWHCIQSETOMHFNGRI

SDXZYWQKRFESSLBGRENTPNZVSSRTEZLIOVXIBRVDYIZYNNLOLEOGOA (period 9)

Period (13 max)? 9

9 8 7

......... 6 5 4

.................. 3 2 1

..........................

HRINKAALE

ZLOZARBWL

DAUCEELXX

UQVORNFMM

AUBGFQPRK

(B)ack to MENU, or (R)un again? b

It can be seen that in this case, the keyword
DRINKABLE is worth a try! Selected from
3rd, 1st, 1st, 1st, 1st, 1st, 2nd, 1st and 1st
row.

There is a bonus with this programme listing.
To modify it for other types of periodic substi-
tution cyphers is easy, just change a few lines !
For example, a BEAUFORT. Change lines 240
and 250 to

240 FOR J=1 TO C:A=ASC(MID$(C$,J,1))-65:A=91+K-A

250 IF A>90 THEN A=A-26

For a PORTA, change line 230 as well, and add line 255:

230 FOR K=0 TO 12

240 FOR J=1 TO C:A=ASC(MID$(C$,J,1)):IF A<78 THEN D=1 ELSE D=-1

250 A=A(13+K)*D:IF A>90 THEN A=A-13

255 IF A<65 THEN A=A+13

And that’s not all ! The variables G$ and B$

may be changed to accommodate other lan-
guages. The PORTA version was successful
with a recent XENO in CM.

And of course all could be combined into one
programme, with an array for the different
language G$(n)’s and B$(n)’s, and a ON -

GOTO for the type. However the difficulty of
building in default examples, probably 30 or
even 40 would be required, means that the list-
ing would be over complicated, and unneces-
sary. Credence is given to any possible user !

Good luck, and good solving !

Winter 1993 13

VIGKEY.BAS

100 REM ’VIGKEY’-An aid in finding VIGENERE keyword

110 DATA "PRGRFESJXHRBVWECPEFTCECEEXEBYWAOYTAMOCIANEDWELIAOERTEEQUUNITIZWHCIQ

SETOMHFNGRISDXZYWQKRFESSLBGRENTPNZVSSRTEZLIOVXIBRVDYIZYNNLOLEOGOA"

120 DIM G(26),B(26),GG(5,13),KK(5,13)

:TLE$="The VIGENERE cypher - an aid in finding the keyword from cyphertext and period."

:CLS:PRINT TLE$:PRINT:PRINT

130 G$="AEHINORST":B$="JKQVWXZ"

140 PRINT " Enter text in UPPER case, letters only, no spaces,"

150 PRINT TAB(25) "(Just ’F’ if data is on disc)":PRINT

:INPUT "Enter cypher text:";CT$:IF CT$="" THEN READ CT$

:PRINT CT$;" (period 9)":GOTO 190

160 PRINT:IF CT$="F" OR CT$="f" THEN PRINT:INPUT "Name of file holding data";N$

:I=INSTR(N$,"."):IF I>0 THEN N$=LEFT$(N$,I-1)

170 IF LEN(CT$)>1 THEN 190

180 N$=N$+".CT$":PRINT:OPEN "I",#1,N$:INPUT #1,CT$:CLOSE #1

190 I=INSTR(CT$," "):IF I>0 THEN CT$=LEFT$(CT$,I-1)+MID$(CT$,I+1):GOTO 190

200 LC=LEN(CT$):PRINT:INPUT "Period (13 max)";P

210 FOR N=1 TO P:C$="":PRINT P+1-N;

220 FOR J=N TO LC STEP P:C$=C$+MID$(CT$,J,1):NEXT:C=LEN(C$)

230 FOR K=0 TO 25

240 FOR J=1 TO C:A=ASC(MID$(C$,J,1))-K

250 IF A<65 THEN A=A+26

260 C1$=CHR$(A)

270 IF INSTR(G$,C1$)>0 THEN G(K)=G(K)+1

280 IF INSTR(B$,C1$)>0 THEN B(K)=B(K)+1

290 NEXT:PRINT ".";

300 NEXT

310 FOR H=0 TO 4

320 GG(H,N)=G(0)-B(0):KK(H,N)=0:FOR Z=1 TO 26

:IF GG(H,N)<(G(Z)-B(Z)) THEN GG(H,N)=G(Z)-B(Z):KK(H,N)=Z

330 NEXT

340 G(KK(H,N))=0:NEXT

350 FOR K=0 TO 25:G(K)=0:B(K)=0:NEXT

360 NEXT:PRINT:PRINT

370 FOR H=0 TO 4

380 FOR Z=1 TO P:PRINT CHR$(KK(H,Z)+65);:NEXT:PRINT

390 NEXT

400 PRINT:PRINT "(B)ack to MENU, or (R)un again";:INPUT Z$

410 IF Z$="B" OR Z$="b" THEN RUN "MENU.BAS"

420 RUN

14 Computer Supplement 17

THE POLLUX CIPHER

BOATTAIL

The Pollux cipher is based on the Morse
Code. The plaintext is first encoded in Morse
and then the dots, dashes and separators
(x’s) are enciphered by digits. For exam-
ple, the phrase “home run” first becomes
....x---x--x.xx.-.x..-x-. Then, using 1,
2, and 3 as separators, even digits as dots
and odd digits as dashes, the phrase becomes
“08461 75929 93013 85426 65198”. The ci-
pher is inefficient, expanding seven letters into
twenty-five digits but solving it is a very in-
triguing puzzle.

To solve a Pollux, the first step must be find-
ing the separators. Since there must be three
(or four, in a variation) separators, the pos-
sibilities run from 012 to 789, 120 sets in all.
There can never be three separators in a row.
Since no morse string has more than four com-
ponents, dots or dashes, separators can’t be
more than four spaces apart. By testing each
possible set with these criteria, all but the one,
correct set will usually be eliminated.

After filling in the separators, the dots and
dashes are discovered by trial and error. A sin-

gle character between two separators must be
either a dot, for E, or a dash, for T. A three let-
ter string with one, four and one morse char-
acters is quite probably “THE” (-x....x.).

This is precisely how the Pollux program func-
tions. The computer performs the elimina-
tion tests and stores the correct set in array
sepsol. If there is only one correct set, it is
automatically transferred to the operating set
array opsep. If there is more than one pos-
sible set, the user selects the operating set.
After the computer substitutes the separators
in the morse array text[morse], the cipher is
displayed and the solver chooses dot and dash
equivalents. As the morse strings are filled,
the computer decodes them into letter equiv-
alents in text[plain].

The program uses the standard cipher library
CIPHLIB with the addition of the new routine
morsedecode. A test cipher is included in the
program, for testing any future modifications.
[Ed: Contact BOATTAIL for the most up-to-
date version of the CIPHLIB library. DMV]

Winter 1993 15

POLLUX.PAS

program POLLUX; {determines separator digits, 3 or 4, by trial & error.

puts separators into morse text, solves plain by trial

& error}

{By BOATTAIL, July 9, 1991}

USES Crt,Printer,Ciphlib; {uses morsedecode procedure}

CONST

Maxlen=600;

test1=’027345107549163784967245107451308194173571409485170891532492’;

test2=’683782590467328691425803674950835261913645792314987609312564’;

test3=’079813628546192857291674301985602635230714512983927645826947/’;

{PLAIN= Researchers have found a genetic abnormality that could...}

{E-6 MJ91 ZYZZ}

itc=’Is This Correct?’;

TYPE

line = (num,morse,plain);

VAR

test :String; {test cipher text}

exitflag :Boolean;

selnum :Integer; {menu selection}

intext :txtarr; {cipher input array}

text :array[line] of txtarr;

clast :Integer; {last element of cipher arrays}

cnum :intarr; {cipher digits in numbers}

sepflag :Boolean; {have separators been computed yet?}

flag :Boolean; {general purpose flag}

solnum :Byte; {how many sets of separators found?}

numsep :Integer; {number of separators, 3 or 4}

sepsol :array[0..10,0..3] of Byte; {sep solutions}

opsep :array[0..3] of Byte; {chosen separators}

ddx :array[0..9] of Char; {equivalents, dash, dot or x}

procedure ciphfill;

var x :byte;

begin

for x:=0 to clast do begin

text[num,x]:=intext[x];cnum[x]:=Ord(intext[x])-48;end;

FillChar(ddx,Sizeof(ddx),’ ’); {clear dot-dash array to blanks}

FillChar(text[plain],Sizeof(text[plain]),’ ’); {clear plaintext}

end;

procedure sepfill(n:Byte); {put chosen separators into dot-dash array}

var x :byte;

begin

for x:=0 to numsep-1 do begin opsep[x]:=sepsol[n,x];ddx[opsep[x]]:=’x’;end;

end;

procedure morsefill; {fill morse text from dot-dash equivalents}

var x,y :Byte;

begin

FillChar(text[morse],Sizeof(text[morse]),’ ’); {clear morse text}

for x:=0 to 9 do

for y:=0 to clast do text[morse,y]:=ddx[cnum[y]];

end;

procedure displayline(ln:line); {display cipher, morse, or plain}

const wid=80;

16 Computer Supplement 17

var f,g,h,k,t :Byte; endflag :Boolean;

begin

g:=0;h:=wid-1;endflag:=false;f:=Ord(ln);t:=0;

repeat

if h>clast then begin h:=clast;endflag:=true;end;

GotoXY(1,1+f+(4*t));Textcolor(f+3);

for k:=g to h do Write(text[ln,k]);

Inc(t);Inc(g,wid);Inc(h,wid);

until endflag=true;

end;

procedure dispall; {display cipher, morse & plain}

var ln :line;

begin

Textmode(CO80);ClrScr;for ln:=num to plain do displayline(ln);

end;

procedure choosesep; {which set of computed separators do you want to try?}

var w :Integer; flg :Boolean;

begin

if solnum=0 then begin

message(’Only One Possible Set’,Cyan,9,20,false);any_key;end

else begin

digit_in(’Which Separator Set? ’,Blue,1,20,w);Write(w);

yes_no(itc,White,1,24,flg);

if flg=true then sepfill(w);

end;

end;

procedure compsep3; {deduce three separators by trying all combinations}

var b,i,j,k,n,sc,nsc :Byte;

label 650,660,670;

begin

b:=0;

for i:=0 to 7 do

for j:= i+1 to 8 do

for k :=j+1 to 9 do begin

GotoXY(18,12);Write(i,’ ’,j,’ ’,k);sc:=0;nsc:=0;

for n:=0 to clast do begin

if (cnum[n]=i) or (cnum[n]=j) or (cnum[n]=k) then goto 650;

if nsc=4 then goto 670 else begin Inc(nsc);sc:=0;goto 660;

end;

650: if sc=2 then goto 670 else begin Inc(sc);nsc:=0;end;

660: end; {of for n}

sepsol[b,0]:=i;sepsol[b,1]:=j;sepsol[b,2]:=k;Inc(b);

670: end; {of for k}

solnum:=b-1; {number of separator solutions}

sepflag:=true;

end;

procedure compsep4; {deduce four separators by trial}

var b,h,i,j,k,n,sc,nsc,x :Byte;

label 750,760,770;

begin

b:=0;

for h:=0 to 6 do

for i:=h+1 to 7 do

Winter 1993 17

for j:=i+1 to 8 do

for k:=j+1 to 9 do begin

for n:=0 to clast do begin

x:=cnum[n];

if (x=h) or (x=i) or (x=j) or (x=k) then goto 750;

if nsc=4 then goto 770 else begin

Inc(nsc);sc:=0;goto 760; end;

750: if sc=2 then goto 770 else begin Inc(sc);nsc:=0;end;

760: end; {of for n}

sepsol[b,0]:=h;sepsol[b,1]:=i;sepsol[b,2]:=j;sepsol[b,3]:=k;

Inc(b);

770: end; {of for k}

solnum:=b-1;sepflag:=true;

end;

procedure displaysep; {display deduced separator set(s) on screen}

var f,g :Byte;

begin

ClrScr;Textcolor(LightMagenta);GotoXY(1,6);Write(’Separators:’);

for f:=0 to solnum do begin

GotoXY(15,6+f);Textcolor(Cyan);Write(f,’ ’);Textcolor(LightGreen);

for g:=0 to numsep-1 do Write(sepsol[f,g],’ ’);end;

end;

procedure decode; {change morse text to plain}

var x :Byte; strflag,blankflag :Boolean; xstr :Str5;

begin

FillChar(text[plain],Sizeof(text[plain]),’ ’);

strflag:=false;blankflag:=false;xstr:=’’;

for x:=0 to clast do

case text[morse,x] of

’x’ : begin

if (strflag=true) and (blankflag=false) then begin

morsedecode(xstr,text[plain,x-1]);

strflag:=false;

end;

blankflag:=false;xstr:=’’;

end;

’.’,’-’ : begin xstr:=xstr+text[morse,x];

strflag:=true;end;

’ ’ : begin strflag:=false;blankflag:=true;xstr:=’’;end;

end;

end;

procedure instruct; {display instructions while using substitution screen}

begin

GotoXY(1,22);Textcolor(White);Write(’0123456789’);Textcolor(LightCyan);

GotoXY(1,24);Writeln(’Use right and left arrows to move cursor’);

Write(’Insert dot, dash, or blank below digit; Escape for Main Menu’);

Textcolor(Red);

end;

procedure substitute; {interactive, trial & error solving on screen}

var x,indx :byte; a,b :Char; outflag :Boolean;

begin

ClrScr;dispall;instruct;indx:=0;outflag:=false;

repeat

18 Computer Supplement 17

GotoXY(1,23);for x:=0 to 9 do Write(ddx[x]);GotoXY(indx+1,23);

b:=Readkey;

case b of

’ ’,’.’,’-’ : begin ddx[indx]:=b;morsefill;decode;

displayline(morse);displayline(plain);end;

#0 : begin a:=Readkey;

case a of

#77 : indx:=(indx+11) mod 10; {left arrow}

#75 : indx:=(indx+9) mod 10; {right arrow}

end;

end;

#27 : outflag:=true; {escape key}

end;

until outflag=true;

end;

procedure hardcopy; {printout cipher, morse, plain, dot-dash}

const dwon=#0#27#87#49#13; {NUL,Esc,W1,CR}

dwoff=#27#87#48#13; {Esc,W0,CR}

wid=40; {40 chars. per printed line}

var f,g,h :Byte; out :Boolean; ln :line;

begin

Write(Lst,dwon); {double width printing on, CR}

g:=0;h:=wid;out:=false;

repeat

if h>clast then begin h:=clast;out:=true;end;

for ln:=num to plain do begin

for f:=g to h do Write(Lst,text[ln,f]);

Write(Lst,#10#13); {LF,LF,CR}

end;

Inc(g,wid);Inc(h,wid);Write(Lst,#10); {blank line between rows}

until out=true;

Writeln(Lst,’0123456789’);

for f:=0 to 9 do Write(Lst,ddx[f]);

Write(Lst,dwoff,#13#12); {double width printing off,CR,Form feed}

end;

begin {main body of program}

test:=test1+test2+test3; {test cipher assembled}

sepflag:=false;exitflag:=false;

repeat

Textmode(CO40); {40 column color}

ClrScr;Textcolor(LightBlue);GotoXY(10,1);flag:=false;

Writeln(’POLLUX CRYPTANALYSIS’^J^J);

Writeln(’(1) Enter Cipher Digits’^J);

Writeln(’(2) Find Separators’^J);

Writeln(’(3) Display Cipher’^J);

Writeln(’(4) Change Separators’^J);

Writeln(’(5) Substitute in Cipher’^J);

Writeln(’(6) ’^J);

Writeln(’(7) Hardcopy’^J);

Writeln(’(0) Exit to DOS’^J);

digit_in(’Select by Number: ’,White,10,24,selnum);

case selnum of

1 : begin

Winter 1993 19

cipherin(test,Maxlen,clast,intext);

yes_no(itc,White,1,24,flag);

if flag=true then begin

squeeze([’0’..’9’],clast,intext);

ciphfill;

end;

end;

2 : if sepflag=false then begin

ClrSCr;

number_in(’How Many Separators? ’,Red,7,12,3,4,numsep);

if numsep=4 then compsep4 else compsep3;

sepfill(0);morsefill;displaysep;any_key;

end;

3 : begin dispall;any_key;end;

4 : begin displaysep;choosesep;morsefill;end;

5 : substitute;

6 : ;

7 : hardcopy;

8 : ;

9 : ;

0 : begin ClrScr;yes_no(’Quit This Program?’,Red,7,12,exitflag);

end;

end; {of case statement}

until exitflag=true;

Textmode(CO80);Textcolor(White); {80 column color}

end. {of program }

NOTES TO AUTHORS

The Computer Supplement is intended as a fo-
rum to publish articles on the cryptographic
applications of computers. We are always
looking for submissions, but we ask the au-
thors to bear in mind:

1. Many readers are new to ciphers; please
include a brief description of the cipher
in question.

2. Many readers are new to computers; ex-
plain why you are using a computer as
well as how.

3. Include the output of a typical run. If
possible, build in an example for the
reader to check the operation. Indicate

how long it took to obtain this result.

4. Include a full description of how the pro-
gram works, and back it up with com-
ments in the listing.

5. Include a table of variables, either sepa-
rately or as a part of the listing.

6. If at all possible, please submit every-
thing in electronic form, either on a disk
(any IBM format) or uploaded to the
ACA BBS. This makes it much easier for
us to typeset.

7. Send material for publication to Dan
Veeneman, PO Box 7, Burlington, IL,
60109–0007, USA.

20 Computer Supplement 17

MORSE DECODE LIBRARY PROCEDURE

BOATTAIL

This is a simple routine that changes the
Morse Code into its equivalent letters. If
string mstr is found in the array morse, its
corresponding letter is taken from array plain
and output as the character variable pl. The
routine also recognizes the Morse digits. If

mstr is not a valid Morse code, pl is returned
as Chr(0), or NUL. This procedure was very
useful in my program POLLUX.PAS and I will
use it in FRACMORS.PAS, my next cryptanalysis
project.

MORSE.PAS

procedure morsedecode(mstr:str5; var pl:Char);

const

plain :array[0..35] of Char = (’e’,’t’,’a’,’o’,’n’,’i’,’r’,’s’,’h’,

’l’,’d’,’c’,’u’,’p’,’f’,’m’,’w’,’y’,’b’,’g’,’v’,’k’,’q’,’x’,

’j’,’z’,’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’);

morse :array[0..35] of str5 = (’.’,’-’,’.-’,’---’,’-.’,’..’,’.-.’,’...’,

’....’,’.-..’,’-..’,’-.-.’,’..-’,’.--.’,’..-.’,’--’,’.--’,’-.--’,

’-...’,’--.’,’...-’,’-.-’,’--.-’,’-..-’,’.---’,’--..’,’-----’,’.----’,

’..---’,’...--’,’....-’,’.....’,’-....’,’--...’,’---..’,’----.’);

var x :Byte;

begin

x:=0;pl:=#32;

while (pl=#32) and (x<=35) do begin

if mstr=morse[x] then pl:=plain[x];

Inc(x);

end;

end;

Winter 1993 21

WHAT THE OTHER GUY IS DOING

GRAPE JUICE (Tom Cage) has sent me a
set of high density disks with his current pat-
tern dictionary: 324,016 words at present, and
growing ! If anyone would like more info, or a
copy, contact him or the Editor.

Bruno Lienard sold his Atari ST and bought
a Compaq Contura 3/25. He is currently
working on a French pattern-word list. His
first version has about 200,000 words, but the
second will have closer to 400,000. These lists
are available free to the Krewe, just send two
720K formatted disks (3.5 inch only) and a
self-addressed mailer. He is also working on
German and English lists, and has a program
that helps to find pattern words. It accepts
regular expressions and works under Windows
3. The C source code is included, but the com-
ments and documentation are in French !

BOATTAIL (Patrick Larkin) is still using
his Datatrain 386SX-16, now with 4Mb mem-
ory and a SoundBlaster board. Anyone doing
any Cons. with music as the message ? His
latest projects are still in Turbo PASCAL, im-

proving his ROUTE.BAS program from 1986. It
now presents the ciphertext on the screen in
all possible encipherment blocks, allowing a
solution by simple inspection. BOATTAIL
is also occasionally on CompuServe.

Robert Matthews is looking for Quick-
BASIC programs to aid him in the solu-
tions for Pollux, Morbit, Redefence, twin bi-
fid, digrafid, two-square, four-square, Grand-
pre, Null, portax, slidefair, tridigital and tri-
square. If anyone has any BASIC versions that
could help, let him or the Editor know ! By
the time you read this, Robert should be in
Acapulco with his wife and his laptop, enjoy-
ing the sunshine !

Decis Thierry sent in a program for the
Atari ST that breaks substitution ciphers. He
states: “All you have to do is type in the ci-
phertext and wait one or two hours.” The
ciphertext must have at least 100 letters, and
it currently only works for French crypts. He
is currently searching other texts to produce
an English-language version.

ABOUT THIS ISSUE

This issue was produced using Donald Knuth’s
amazing TEX typesetting program, with help
from various style files, especially multi-
col.sty and fullpage.sty. After comments
from readers, I’ve switched from a 12pt to an
11pt font. This should get more information
onto a single page, and reduce the impression
of “wasted space.”

The .tex file that produced this issue is about
67,000 bytes, and is edited with a simple
ASCII text editor (MKS Toolkit’s vi). It was
printed on a Hewlett-Packard LaserJet IIIP.
The pcTEX version I have runs fine on my
IBM–PC 8086 clone in 640K of memory !

22 Computer Supplement 17

BEGINNER’S GUIDE TO THE ENVIRONMENT

Jac Goudsmit

An interesting part of the MS-DOS operating
system is the “environment”. This is an area
in memory where you can store a number of
system settings (used by various programs) as
strings (text) containing an identifier, followed
by an equals sign (“=”) and the value to which
the identifier has been assigned. The identifier
names are stored as upper case strings, but
the value can be in upper case, lower case, or
mixed. Almost any string value is possible.

In everyday use, the most important variables
are:

PROMPT This is the text that the command
interpreter puts on the screen to signal you
that you can enter a DOS command (like DIR).
If you don’t set your prompt with the PROMPT
command, it will default to ng. $n is in-
terpreted as the current disk letter; $g is a
greater-than sign (“>”).

Most people however put something like
PROMPT pg in their AUTOEXEC.BAT, so they

can also see the current directory ($p). But
you can also set your prompt to something
else (in the early days you could scare peo-
ple by setting the prompt to ENTER YOUR

PASSWORD).

PATH This is a list of directories that DOS
searches through when you type a command.
The default is nothing, which means to only
search the current directory.

If you type a command like EDIT (which is
not an internal command like DIR), DOS will
first search the current directory for a file
named EDIT.COM. If that doesn’t exist, it tries
EDIT.EXE and if that doesn’t exist, it tries
EDIT.BAT. If none of them is found in the cur-
rent directory, it starts looking for them in the
directories listed in the PATH environment.

You should set your PATH variable with the
PATH command. If you have a hard disk,
there is probably a PATH command in your

AUTOEXEC.BAT file. An example is
PATH C:\;C:\DOS;C:\UTILS

In this example, DOS will always search for
external commands in the sequence <current
dir>, C:\, C:\DOS, C:\UTILS, before it
gives up with the “Bad command or file name”
message.

COMSPEC This variable should ALWAYS be
present in the environment. It is put there
automatically when you start the computer.
The COMSPEC variable is used by the com-
mand interpreter (COMMAND.COM) to indicate
the position from where it was loaded. This
is usually something like A:\COMMAND.COM or
C:\COMMAND.COM.

The reason why it needs to know this is that
COMMAND.COM is loaded into memory in two
parts called the resident portion and the tran-
sient portion. The resident portion stays in
memory as long as DOS runs. The transient
portion can be overwritten by programs that
need the memory. When such a program fin-
ishes, the resident portion will detect that the
transient portion is missing, and will attempt
to re-load it. For that it needs to know where
to look and that’s where COMSPEC comes in. If
the transient portion can’t find the file that’s
in COMPSPEC or if something is wrong with it,
it will print the message “Cannot load COM-
MAND.COM” on the screen. Depending on
your particular setup, you will asked to insert
a diskette with the file, or you will see “Sys-
tem halted” (after which you need to press
Ctrl-Alt-Del).

SET You can see what’s in your environ-
ment any time by typing the command SET.
This gives a list of environment variables and
their values.

You can also change an environment variable
by typing SET variablename = value.

This is also an alternative way to
change the PATH and PROMPT settings,

Winter 1993 23

e.g. SET PROMPT=pg is the same as
PROMPT pg. To delete a variable from the
environment, assign the variablename to noth-
ing, i.e. type SET variablename =

There is no way to use the value of an envi-

ronment variable in a regular DOS command.
But in batch files, you can use an environ-
ment variable by putting the identifier be-
tween percent signs (“%”). An example called
ADDPATH.BAT follows below.

ECHO OFF

REM ADDPATH adds a directory to your path

REM The original value for the path variable is stored as ORGPATH

SET ORGPATH=%PATH%

PATH %PATH%;%1

Notice that unlike batch file parameters (%1,
%2, %3, etc), an environment variable must be
between percent signs, not just following one.
Referring to environment variables in batch
files with percents was undocumented until (I
think) version 3.3 of DOS. Futhermore, a bug
in DOS 3.00 prevents this use of the environ-
ment (it crashes the system if I remember cor-
rectly).

A lot of programs nowadays make use of the
environment to retrieve their default options
or directory. DOS 5.0 introduced an extremely
(though still not enough) extended DIR com-
mand that can generate sorted directory lists,
or lists of hidden files only. For example, if
you prefer your directories to always be listed
in alphabetical order, you can do a DIR /ON

every time you want a directory list, or you
can use the DIRCMD environment variable: SET
DIRCMD=/ON

The environment is of limited space. Dif-
ferent DOS versions use different amounts of
default environment space. But you can al-
ways change the environment space to a bigger
setting by putting a SHELL directive in your
CONFIG.SYS. This directive is used to specify
a different command interpreter. The default
is \COMMAND.COM. If you want to change the
environment space setting, insert a line with
something like
SHELL=C:\COMMAND.COM /P /E:512

in your CONFIG.SYS for DOS versions earlier

than 5.0, or
SHELL=C:\COMMAND.COM C:\ /P /E:512

for DOS 5.0 (or above).

The /P is for Permanent. This is to make
sure you don’t accidentally EXIT from the first-
loaded command processor (this would crash
the system). The value after /E: indicates the
number of bytes that are allocated for the en-
vironment for DOS versions 3.2 (again if my
memory serves me right) and up, or the num-
ber of paragraphs for lower versions (a para-
graph is 16 bytes). Again, the /E: parameter
was not document in the early DOS versions.
A good value for normal use is 512 bytes. If
you are on a network, add another 256 bytes
or so. If you are a programmer, you will prob-
ably need even more. If you ever see the mes-
sage “Out of environment space”, this means
the value is too low. Try to keep it as low as
possible without getting this message.

One last remark: the COMMAND.COM that is
loaded first contains the “master environ-
ment”. If you “shell to DOS” from some pro-
gram, you only have access to a copy of that
master environment. As soon as you exit back
to the program with the EXIT command from
DOS, any new settings would be lost. For
example, if you would start WordPerfect and
then type Ctrl-F1,1 to shell to DOS, you can
change the PATH and all other environment set-
tings, but the old settings will be restored as
soon as you type EXIT to return to WP.

24 Computer Supplement 17

CONS WITH CRYPTO

David Hamer/DAEDALUS

Prompted by a request from LANAKI, I re-
cently set out to create a few Aristocrat cons.
Being fundamentally lazy and wanting the
computer to do most of the work I began by
looking through my diskettes for software that
might do the job. I settled on BITSIFTER’s
program, CRYPTO.

For some considerable time this was my pro-
gram of choice for help with the solution of
Aristocrats (and to some extent Pats). CRYPTO
can usually solve — almost automatically —
the first 17 to 20 Aristocrats in a given issue
of the Cm and with a little intuitive assistance
usually results in a clean sweep (or at least a
23 or 24). More recently, having acquired a
math co-processor I have forsaken CRYPTO for
SY S. ABEND’s program CRYPT on my desk-
top machine but, when on the road with my
laptop — no co-processor — I use CRYPTO.

I will not attempt to describe the normal use of
CRYPTO here - for details refer to CS2:p6. A
procedure for the construction of Aristocrats
and Patristocrats follows:

First load a copy of the file CRYPTO.EXE into
a subdirectory or onto a diskette. This is the
only CRYPTO file you’ll need. The absence of
the huge word list files will not prevent the
core program from running and will in fact
speed up the somewhat non-standard use to
which we are about to put it. Omit, too,
all the other files which are normally included
with CRYPTO. Include in the subdirectory (or
diskette) the PC Magazine file PRN2FILE.COM.
If you don’t have this it can be found on Com-
puserve’s PC-MAGNET or on many local bul-
letin boards. [Ed: It can also be found on the
ACA BBS, and is included in the Issue Disk.
DMV]

Next write a batch file (GO.BAT) that reads
something like:

echo off

prn2file cons.asc

crypto

— and you’re ready to go!

Type GO and the TSR program PRN2FILE will
load followed by CRYPTO. The result will be a
blank screen ! Now type in a plaintext alpha-
bet in the upper left hand corner, thus:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

..........................

Using the Home and cursor keys put the cur-
sor on the dotted line and enter the ciphertext
alphabet and keyword (example = cipher):

ABCDEFGHIJKLMNOPQRSTUVWXYZ

vwxyzcipherabdfgjklmnoqstu

(Example is for a K2 cipher. For a K1, enter
the keyword with the plaintext alphabet: for
K3/K4, with both alphabets).

Press Shift-F5 and the Plaintext/Ciphertext
alphabets will be displayed in the lower section
of the screen. (Figure #1).

Press the Home key and the cursor will return
to the upper left corner of the screen. With
the space bar, clear the plaintext alphabet -
the ciphertext alphabet will disappear simul-
taneously but the relationship between the al-
phabets is retained by CRYPTO !

Now type in the desired plaintext - in either
Aristocrat or Patristocrat form - and the ci-
phertext appears below it. Plaintext is in up-
per case, ciphertext in lower. This is built
into CRYPTO and cannot be changed. Errors in
typing may be corrected by deleting and in-
serting but CRYPTO behaves differently in this
respect from a regular text editor — a little
trial and error will be necessary ! After en-
tering the text press F4 and the lower display
will change — about the only thing of inter-
est to our present purpose is the letter count.
(Figure #2). Press Shift-F5 to get a display

Winter 1993 25

of the two alphabets and the location of the
keyword for K1 and K2. (Figure #3). For K3
and K4 see my later comment.

Press Shift-Prtsc and PRN2FILE does its
stuff and copies the screen to the file CONS.ASC
which may be edited, later, with any text ed-
itor/word processor. As further cons are cre-
ated they are added to CONS.ASC so you may
do any number you care to before stopping to
edit the text file.

The display on the lower part of the screen

clearly shows the relationship between the al-
phabets and the keywords for K1 and K2 ci-
phers. For K3 and K4 this relationship gets a
bit confusing and it is difficult to place each
keyword. Accordingly, I type this information
as a separate block when editing the text. If
anyone knows a way of getting CRYPTO to dis-
play the K3 and K4 keywords in their proper
relation to the alphabets I’d like to hear about
it, as I’ve never been able to figure it out !

So now you have no excuse for not sending in
cons to the Aristo and Pat editors. Go to it !

ABCDEFGHIJKLMNOPQRSTUVWXYZ

vwxyzcipherabdfgjklmnoqstu

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v w x y z c i p h e r a b d f g j k l m n o q s t u

L M F N J O P I G Q R S T U V H W K X Y Z A B C D E

0

Figure #1

26 Computer Supplement 17

WHEN A MAN IS TIRED OF *LONDON, HE IS TIRED OF LIFE.

qpzd v bvd hl mhkzy fc *afdyfd, pz hl mhkzy fc ahcz.

12 9 8 8 7 7 6 6 5 4 3 3 3 2 2 2 2 2 2 2 1.5.2.2.1.0 lowf=2

(E T A O N I S R H)(L D C U P F M W Y)(B G V K Q X J Z) ltrs=38

(E I N O D F A H L)(R S T M W B C G J)(K P Q U V X Y Z)

5 5 4 4 3 3 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 570 >0

Figure #2

WHEN A MAN IS TIRED OF *LONDON, HE IS TIRED OF LIFE.

qpzd v bvd hl mhkzy fc *afdyfd, pz hl mhkzy fc ahcz.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v w x y z c i p h e r a b d f g j k l m n o q s t u

L M F N J O P I G Q R S T U V H W K X Y Z A B C D E

0 570 >0

Figure #3

Winter 1993 27

PUBLIC KEY DOCUMENT AVAILABLE

A good introductory document on cryptogra-
phy is a 162 page publication put out by the
US National Institute of Standards and Tech-
nology called Public-Key Cryptography (spe-
cial publication 800–2) by James Nechvatal,
April 1991. The text is not an in-depth ex-
amination of these topics but will serve as a

good introduction. This document should be
just right for the beginner who is looking for
background information on RSA and associ-
ated subjects. [Ed: This document is avail-
able in electronic form on the ACA BBS, in
directory /public/crypto as file 800-2.ZIP.
DMV]

Contents:

Cryptosystems and Cryptanalysis

Key Management

Digital Signatures and Hash Functions

Examples of public key systems and hash functions

Implementations of public key cryptography

Sample proposal for a LAN Implementation

Appendix

Mathematical and Computational Aspects

Algorithms and Architectures

The classical theory of computation

Theory of probablistic computing

Breaking knapsacks

Birthday attacks

Modular arithmetic and Galois Fields

Euclid’s Algorithm

Chinese Remainder theorem

Primative Roots and discrete logs

Primality tests

Mathematics of RSA

Quadratic residuosity modulo a compositite

Introduction to zero knowledge proofs

Alternatives to Diffie/Hellman model

28 Computer Supplement 17

BREAKING A CRYPTOSYSTEM

Paul C. Leyland (pcl@ox.ac.uk)

[Ed: The following article was recently posted to the Usenet newsgroup sci.crypt. At the risk
of boring our sci.crypt readers, it is reproduced here as an interesting example of cryptanalysis.
DMV].

Last September, Gerben Wierda posted the following:

I am reading "The Code Breakers". Many people talk about cyphers in a

theoretical sense, but the test is in the cryptanalysis. So here is the

cyphertext:

AOBUI EBDEL ATNGI AGVWL SSNDD DBALL LTERS SAMST TDSSA CIANE EENBB XPRSD

ADABT ATETE HUEHX IPARA NCCSS MASTO TNOOP LSNAT ATEBE BESNG OAGIV WLSAS

SSRAN ADMMA ENOEO LESST HASSW LLABA FLLUY EYETE AETAN HNCCR DABLT YYOAO

NNCNN EAEDU EIAID ITHHA DBLNG EGFFA THHLS TATUU ALTRR FAFVE AEORO EIUAY

YWRDD ASSBE UNDOA RYYAE

And my question is this: Apart from talking theory here. Are there people who

can solve this very simple system?

If you can solve this you will know why it cannot be used (hint, hint)

I solved it but no-one else has admitted to do-
ing so, according to Gerben. Several others
were interested and discussed it with me by
email.

In the hope that this might be of interest to
psychologists and cryptanalysts, here’s how I
did it. I hope that I’m not spoiling people’s
fun, but you have had nearly 5 months to work
on it.

First, the hint told me that the system is sim-
ple and effectively useless, so it is likely to be
a waste of time investigating Enigmas etc.

I counted letter and digram statistics. Very
similar to English, with A and E swapped in
frequency. Too many repeated letters, espe-

cially SS. First hypothesis: may be it’s a trans-
position. Not English, though. Email to the
author yielded two hints: it is *not* a stan-
dard system (so simple transpositions are out)
and the plaintext is English.

Next step was to look for repeats in the ci-
phertext. There are only two of length greater
than 3, namely VWLS. The similarity of this to
the word “vowels” was instantly noticed, with
vowels omitted (self-referential) but this was
thought to be a co-incidence. Second mistake.
(The first was in exploring transposition ci-
phers).

I then re-formatted the ciphertext as one line
(here split for ease of viewing)

AOBUIEBDELATNGIAGVWLSSNDDDBALLLTERSSAMSTTDSSACIANEEENBBXPRSDADABTATETEHU

EHXIPARANCCSSMASTOTNOOPLSNATATEBEBESNGOAGIVWLSASSSRANADMMAENOEOLESSTHASS

WLLABAFLLUYEYETEAETANHNCCRDABLTYYOAONNCNNEAEDUEIAIDITHHADBLNGEGFFATHHLST

ATUUALTRRFAFVEAEOROEIUAYYWRDDASSBEUNDOARYYAE

Winter 1993 29

I had a look at it and fancied that could
see suggestions of English words. For in-
stance, VWLS already mentioned; LTERS might
be “letters”; NOEOLESS might be “nonethe-
less”; NCCRABLTY might be “incredibility” or
“readability” and so on.

If this was significant, then the vowels are
seriously misplaced. Hypothesis: the vowels
have been removed from the plaintext and re-
inserted (pseudo-)randomly. Test this by look-
ing at the vowel-less ciphertext.

BBDLTNGGVWLSSNDDDBLLLTRSSMSTTDSSCNNBBXPRSDDBTTTHHXPRNCCSSMSTTNPLSNTTBBSN

GGVWLSSSSRNDMMNLSSTHSSWLLBFLLYYTTNHNCCRDBLTYYNNCNNDDTHHDBLNGGFFTHHLSTTLT

RRFFVRYYWRDDSSBNDRYY

Hmm. Now, perhaps DLTNG is “deleting”; DBL
is “double”; XPRSD is “expressed”; BNDRYY is
“boundary”. Note that each of these, and the

previous cases, all end in a doubled letter. In-
sert a break after each double letter to get:

BB DLTNGG VWLSS NDD DBLL LTRSS MSTT DSS CNN BB XPRSDD BTT THH XPRNCC

SS MSTT NPLSNTT BB SNGG VWLSS SS RNDMM NLSS THSS WLL BFLL YY TT

NHNCC RDBLTYY NN CNN DD THH DBLNGG FF THH LSTT LTRR FF VRYY WRDD SS BNDRYY

It’s now pretty obvious, to me at least, that the plaintext is

"? deleting vowels and double letters most ?? can ? expressed but the

experience ? most unpleasant. ? ??? vowels ? random nulls this will

??? ? ? enhance readability ? can ? the doubling ? the last letter ?

every word ? boundary."

The ? indicate a known consonant, with un-
known vowels to be filled in. From context,

we get:

"By deleting vowels and double letters most ideas can be expressed but

the experience is most unpleasant. By using vowels as random nulls,

this will baffle you. To enhance readability, one can do the doubling

of the last letter of every word’s boundary."

This is the solution I sent off. It had one mis-
take: the penultimate “the” should have read
“a”. As consonentless words disappear, they
must be replaced with some other flag; “th”
was chosen, a bad choice in my opinion, but it
doesn’t spoil the intelligibility of the message.

Some of the reasons why this is a poor cipher-
system:

It is easy to break. Took me about three hours
work with a ciphertext-only atack and only a
few subtle hints. I used only the very simplest
of tools to do it and could easily have used
pencil and paper only.

There is no secret information (key) other
than the method.

It is not unambigously reversible. For in-
stance, “baffle” in the solution above could be
replaced by “befool”. Although this particu-
lar example is of an unusual word with essen-
tially the same meaning as the true solution,
other examples needn’t be so benign. (Con-
sider THEIR OTHER THREE).

To me, a great part of the pleasure in break-
ing this system was observing the blind-alleys
and contorted reasoning of the other would-be
solvers. Further, those with a greater knowl-
edge of cryptanalysis than I found it difficult

30 Computer Supplement 17

to shake of pre-conceptions of how to solve
cryptograms based on prior experience.

Finally, would anyone with a knowledge of He-
brew, Arabic and other languages commonly
written without vowels care to comment?

ACA BBS UPDATE

The ACA bulletin board system, Apres, now
has a new 120 megabyte hard drive to replace
the two 40 meg drives. One drive failed just
after the first of the year, preventing callers
from downloading files. This problem has
been fixed, and the system is now available
for both electronic mail (local and to the In-
ternet via UUCP) and files, 24 hours a day at
+1 708 639 8853.

There are two main directories for crypto-
graphic programs: /public/aca, containing
ACA-related programs and files, including
all issue disks; and /public/crypto, con-
taining general cryptographic programs, files,
and documents. Here is a sample directory
listing of some of the files available in the
/public/aca directory:

asolver.zip 48384 04-May-91 IBM Aristocrat solver

casupprt.txt 24388 01-Oct-90 Cryptanalysis program by Walt Howe

csindex.dat 9445 11-Jan-91 Computer Supplement Index 1 - 13

enigmas.lzh 32542 27-Apr-91 Amiga Graphic Enigma Simulator

fatcat.zip 241248 31-Mar-91 FATCAT routines from CS Issue #14

index212.zip 8077 01-Mar-91 Index to Issue disks 1 to 12

issue1.zip 19176 23-Feb-90 Computer Supplement Issue Disk One

issue2.zip 108051 23-Feb-90 Computer Supplement Issue Disk Two

issue3.zip 144218 23-Feb-90 Computer Supplement Issue Disk Three

. . . .

. . . .

issue14.zip 511818 31-Mar-91 Computer Supplement Issue Disk Fourteen

issue15.zip 196027 17-Aug-92 Computer Supplement Issue Disk Fifteen

issue16.zip 14071 17-Aug-92 Computer Supplement Issue Disk Sixteen

krewe.zip 24024 03-Feb-91 ABACUS’ cipher solving aid program.

lauer.pak 40200 07-Jan-91 Lauer’s programs for IBM

nonpat.zip 189125 30-Dec-91 Non-pattern single column

rails11.zip 3331 12-Feb-91 Update on Fleetfoots program for IBM

surrmmx.zip 76760 31-Mar-91 Minimax words 9-16 letters ex. Dan Surr

useful.zip 73239 25-Feb-90 Useful routines to aid in solving

varidict.zip 414724 30-Dec-91 50000-plus words in 26 categories

wl11_34.zip 900742 30-Dec-91 Word lists, lengths 11 to 34

wl1_10.zip 906956 30-Dec-91 Word lists, lengths 1 to 10

