
THE CRYPTOGRAM Autumn 1993

COMPUTER

SUPPLEMENT #18

In this issue:

SOLVING POLYALPHABETIC CIPHERS BY COMPUTER— DMELIORA has a Pascal
program to solve polyalphabetics.

POLLUX REVISITED — BOATTAIL has some enhancements for his Pollux solver.

THE PLAYFAIR CIPHER— An introduction to the Playfair cipher, including a C language
program.

AN AID TO MONOALPHABETIC SOLVING — A simple BASIC program to aid in man-
ual monoalphabetic solving.

Plus: News and notes for computerists interested in cryptography, and cryptographers in-
terested in computers.

Published in association with the American Cryptogram Association

INTRODUCTORY MATERIAL

The ACA and Your Computer (1p). Background on the ACA for computerists. (As printed in ACA and
You, 1988 edition; [Also on Issue Disk #11]

Using Your Home Computer (1p). Ciphering at the ACA level with a computer. (As printed in ACA and
You, 1988 edition).

Frequently Asked Questions (approx. 20p) with answers, from the Usenet newsgroup sci.crypt.

REFERENCE MATERIAL

BASICBUGS - Bugs and errors in GWBASIC (1p). [Also on Issue Disk #11].
BIBLIOG — A bibliography of computer magazine articles and books dealing with cryptography (2p).
(Updated August 89). [available on Issue Disk #11].

CRYPTOSUB - Complete listing of Cryptographic Substitution Program as published by PHOENIX in
sections in The Cryptogram 1983–1985. (With updates from CS #2,3). [available on Issue Disk #3].

DISKEX - A list of programs and reference data available on disk in various formats (Apple—Atari—
TRS80—Commodore—IBM—Mac). Revised March 1990.

ERRATA sheet and program index for Caxton Foster’s Cryptanalysis for Microcomputers (3p). (Reprint
from CS #5,6,7 and 9) [disk available from TATTERS with revised programs].

BACK ISSUES

$2.50 per copy. All back issues prior to 13 have been exhausted, and are awaiting reprinting. Contact the
Editor for current availability.

ISSUE DISKS

$5 per disk; specify issue(s), format and density required. All issues are presently available on two IBM
High Density 1.2M disks, archived with PKZIP. For other disk formats, ask. Disk One — Issues 1 - 10; Disk
Two — issues 11 to current. Disks contain ONLY programs and data discussed in the issue. Programs are
generally BASIC or Pascal, and almost all executables are for IBM PC–compatible computers. Issue text in
TEX format is available for issues 16 to current. Available from the Editor.

TO OBTAIN THESE MATERIALS

Write to: Or via Electronic Mail:

Dan Veeneman dan%decode.UUCP@uunet.uu.net

PO Box 2442 or

Columbia, Maryland uunet!anagld!decode!dan

21045-2442, USA.

Allow 6–8 weeks for delivery. No charge for hard copies, but contributions to postage appreciated. Disk
charge $5 per disk; specify format and density required. ACA Issue Disks and additional crypto material
resides on Decode, the ACA Bulletin Board system, +1 410 730 6734, available 24 hours a day, 7 days a
week, 300/1200/2400/9600 baud, 8 bits, No Parity, 1 stop bit. All callers welcome.

SUBSCRIPTION

Subscriptions are open to paid-up members of the American Cryptogram Association at the rate of US$2.50
per issue. Contact the Editor for non-member rates. Published three times a year or as submitted ma-
terial warrants. Write to Dan Veeneman, PO Box 2442, Columbia, MD, 21045-2442, USA. Make checks
payable to Dan Veeneman. UK subscription requests may be sent to G4EGG.

CHECK YOUR SUBSCRIPTION EXPIRATION by looking at the Last Issue = number on your
address label. You have paid for issues up to and including this number.

Autumn 1993 1

SOLVING POLYALPHABETIC CIPHERS BY COMPUTER

D MELIORA

This article describes a program for solv-
ing polyalphabetic cryptograms that use the
Vigenère, Beaufort, or Variant encryption
schemes. It is based on the material on Ka-
siski’s method contained in Gaines [1939] and
in Kahn [1967]. The program is written in
Turbo Pascal, Version 5 and will run on any
computer that supports this language.

Programming Kasiski’s Method

In this disussion, I will take the Vigenère as
my example, but the method can easily be
adapted to the other two types. The first
thing we need to know in cracking a Vigenère
is the length of the keyword. Kasiski’s anal-
ysis helps us find this. It is based on the
fact that in a long enough message, some re-
peated substrings in the plaintext will happen
to be encrypted by the same key letters, re-
sulting in repeated substrings in the cipher-
text. The spacing between these repetitions
will be a multiple of the length of the key-
word. Hence we can obtain good guesses at
the length of the keyword by looking for re-
peated substrings, tabulating the intervals be-
tween them, factoring the intervals, and seeing
which factors come up most frequently. The
key length will normally be one of these fac-
tors.

When we choose a factor f , we then write
the cryptogram as an x-by-f matrix where x,
the number of rows, depends on the length of
the crypt. If f is the right number, then all
the characters in any column have been en-
crypted by the same key letter. Furthermore,
each column in a Vigenère cipher is a Caesar
transposition of the corresponding letters in
the plaintext. It is then only a matter of some
detective work to decide what the key letter
for each column is, and having the key we can
then decrypt the message.

There are two important shortcuts which ob-

viate a lot of the detective work. First, we
can judge whether f is a good factor or not
by computing the index of coincidence (ϕ, see
Kahn, Chapter 12, on this) for each column.
We compute this index for each column and
compare it to two reference values, one for ran-
dom letters (ϕr) and one for English letter fre-
quencies (ϕp; again, see Kahn). A column in
which all the letters have been encrypted with
the same key letter will tend to have a ϕ that
is close to ϕp; hence if all the columns have ϕ’s
close to ϕp, we have probably guessed the key
length correctly.

The second shortcut is this: Since any col-
umn of a Vigenère, Beaufort, or Variant cryp-
togram is either a Caesar cipher or a reversed
Caesar cipher, the likely key letter for that col-
umn can be found by doing a cyclical cross-
correlation between the column’s letter fre-
quencies and the letter frequencies of the En-
glish alphabet. This strategy works if there
are roughly 15 or more letters in each column,
but of course it isn’t always perfect. It’s best
to note the three highest cross-correlations
and search among the associated key letters
for a probable key.

Note that the basic Kasiski method, with
these two shortcuts, removes almost all the
insight and detective work normally required
in solving a polyalphabetic crypt. If you don’t
mind doing the dogwork, you don’t need much
in the way of brains. This means that we can
push the whole task onto the computer, since
computers are made for dogwork and proce-
dures that don’t require much in the way of
brains are easy to program. That is what I
have done here.

The program attacks the cipher with three
procedures named Kasiski, Evaluate, and
Decrypt. Kasiski scans the ciphertext for
repeated substrings, notes the intervals, fac-
tors them, and accumulates the factors. It
displays the repetitions it found and a list of

2 Computer Supplement 18

factors and their frequencies. Before calling
Evaluate, the main program prompts the user
for a key length; respond by selecting one of
the factors in the list. Evaluate then takes
the selected key length, computes the ϕ val-
ues for each column, calls a procedure XCor to
do the cross-correlations, and displays the re-
sults. Decrypt asks the user for a key and uses
the key and the known encryption method to
reconstruct the plaintext. An additional pro-
cedure, Display, shows the ciphertext and the
plaintext as x-by-f matrices.

Running the Program

The best way to find out about the program
is to compile and run it. The program will an-

nounce itself and prompt you for a filename.
Enter the name of the file containing the cryp-
togram. For starters, we will use the example
given at the end of this article. The program
will list the ciphertext as contained in the file,
will tell you the character count and the en-
cryption method used. It then looks for re-
peated substrings and notes the intervals be-
tween them. It then displays all the factors
of all the intervals, with their frequencies of
occurrence, and asks you to choose one. The
most probable key lengths are normally 5 to 12
characters, so this is where you should look.
In our example, we get the following table of
factors and frequencies:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

5 2 4 3 1 4 3 0 1 1 0 0 2 1 2 1 1 0 1 0 0 0 0

7 3 8 7 2 11 8 0 3 3 0 0 7 4 8 4 0 0 4 0 0 0 0

Since large factors naturally tend to occur less
frequently than small ones, I have found, em-
pirically, that the correct key length tends to
show up more clearly if the frequencies are
weighted by the square roots of the factors; the
third line in the table gives these weighted fre-
quencies. In our example, the most frequently
occurring factors are 2 (too short), 4, and 7,
and the weighted table clearly favors 7, so we
guess that the key is 7 letters long.

The program then asks the user to select a fac-
tor for the key length and proceeds to evaluate
this length by computing ϕ and the most likely
key letters for each column. If ϕ is close to the
the English value, it’s likely that all the char-
acters in the column were indeed enciphered

with the same key letter; if the index is close
to the random value, they probably weren’t.
So the program gets a figure of merit for each
column by computing the distance from the
random value to the column’s ϕ and compar-
ing that to the separation between the random
and English values:

f.m. =
ϕ− ϕr

ϕp − ϕr

(Since ϕp and ϕr are only expected values, ϕ
may fall outside this range and give you a fig-
ure of merit > 1 or < 0.) The program com-
putes this ratio for each column. In our exam-
ple, if we type 7, we get the following tabula-
tion:

Autumn 1993 3

Col Frequencies (phi_r = 0.0385; phi_p = 0.0667) Likely

a b c d [etc.] w x y z Phi f.m. Keys

1 1 0 1 0 . . . 0 1 4 0 0.096 2.024 u f y

2 0 0 0 1 . . . 2 0 1 0 0.029 -0.322 s d l

3 1 1 0 2 . . . 0 1 1 1 0.029 -0.322 t z p

4 1 1 2 0 . . . 0 0 0 3 0.110 2.456 i v y

5 0 1 0 0 . . . 0 0 2 1 0.066 0.981 n r y

6 1 1 0 0 . . . 2 0 0 2 0.066 0.981 o d h

7 0 0 2 1 . . . 1 0 0 0 0.075 1.294 v r u

Average fig. of merit (near 1 => good): 1.026

The table shows the index of coincidence and
the figure of merit for each column, and at the
end it displays the average figure of merit. If
the key length has been chosen correctly, this
average will usually be near 1 and, occasion-
ally, greater. In our example, it is 1.026, and
we luck out: the most likely key letters for the
seven columns are u-s-t-i-n-o-v, and that
is the key.

When the program asks you for the keyword,
type Ustinov. (Upper- or lower-case letters
are both acceptable.) It then displays the ci-
phertext and plaintext in parallel matrices and
you will be able to read Peter Ustinov’s words
of wisdom in the plaintext. (If the matrices are
so high that they fill the entire screen, then the
display stops when the screen is full; hit <cr>
for more.) After displaying the decrypted mes-
sage, the program offers you a chance to write
the solution to a file.

Now that we know the plaintext, we can see
where the repetitions came from. Some of
them are accidental, but many aren’t. The
most conspicuous is the string -sdm- which
appears twice. It came from the following co-
incidence:

...ustinovustinov...

...makemistakes...

....sdm....sdm....

The more repetitions of the keyword, the more
likely such coincidences are. It follows that
long keywords are better and that extremely

long keys generated with the aid of a long-
period pseudorandom number generator will
give you the greatest security (except in the
case of a known-plaintext attack). This, of
course, is part of the basis of Vernam encryp-
tion.

Notice that you get several requests for con-
firmation. These permit you to re-try vari-
ous parts of the program (for example, if you
aren’t sure which of several factors to try, you
can try them all and see how they look—what
the confidence levels are and what the most
probable key letters are). At the end of the
whole works, it prompts you for another file
to decrypt. You can keep going like this in-
definitely. To get out of the program, enter a
<cr> in response to the input file prompt.

The key may not appear in the first column of
probable key letters, but the letters are usu-
ally all there in one column or another. You
sometimes have to peer at the probable keys
to decide whether there is a keyword there,
and in very short messages there may be so
little statistical information that the method
breaks down altogether.

The method is not perfect, but even at its
worst it provides enough information for you
to make an intelligent decision, and occasion-
ally the probable key letters will show that you
are on the right track even when the ϕ’s are
low. For example, No. 114 in Gaines, p. 126,
a Beaufort crypt, yields these results:

4 Computer Supplement 18

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

7 3 3 3 2 2 1 2 1 2 0 1 2 1 1 1 1 1 0 0 1 0 0

10 5 6 7 5 5 3 6 3 7 0 4 7 4 4 4 4 4 0 0 5 0 0

This doesn’t look at all promising. The num-
bers suggest a key length of 5, but this yields

garbage. When we try a probable key length
of 7, we obtain this tabulation:

Col Frequencies (phi_r = 0.0385; phi_p = 0.0667) Likely

a b c d [etc.] w x y z Phi f.m. Keys

1 1 1 1 0 . . . 2 2 2 0 0.052 0.492 p i c

2 1 0 1 2 . . . 2 0 0 0 0.052 0.492 u h j

3 0 0 0 0 . . . 1 1 0 2 0.052 0.492 z o d

4 0 1 0 0 . . . 0 1 1 4 0.062 0.830 m z q

5 1 0 0 2 . . . 0 1 1 0 0.029 -0.352 l h x

6 4 2 1 0 . . . 0 0 0 0 0.053 0.501 e t i

7 1 0 0 1 . . . 1 0 1 2 0.063 0.874 s o l

Average fig. of merit (near 1 => good): 0.476

An average figure of merit of 0.476 is not at
all encouraging, but from the likely keys it is
pretty obvious that this is the correct length
and that the key is puzzles.

The program does not accept a ciphertext
from the keyboard. There is just too much
room for mistakes that way and there is no
easy way to edit the input. When creating a
file for decrypting, start by putting the en-
cryption method on a line by itself. Enter
a V for Vigenère, a B for Beaufort, or an A

for vAriant. If you are attacking a crypt in
which the method is unknown, enter a ques-
tion mark. (If you forget to enter the method,
Kasisk will ask you for it.) Then start the ci-
phertext on the next line. You can use either
upper or lower case letters and you can group
the ciphertext in any way you please. For the
best looking output from Kasisk, put no more
than about 75 characters on a line (including
the blanks separating the groups). End the
file with a <cr>; this is how Kasisk recognizes
the end of the ciphertext. Remember to put
the encryption method on the first line.

The maximum message length is 1,024 char-
acters; input lines must be no more than 80
characters long; factors are limited to a range

from 2 to 24; the longest keyword is 24 char-
acters. The program is pretty robust; If
you do anything bad, it will generally issue
very apologetic diagnostic messages (like “I’ve
probably run out of space.”) which should
guide you.

Summary

It is rather surprising to see that the Vigenère
cipher and its relatives can so easily be cracked
by a computer with minimal human interven-
tion. This contrasts strikingly with ordinary
aristocrats which, although normally consid-
ered simpler than polyalphabetic ciphers, are
notoriously hard for an unaided computer to
crack. More than anything else, this program
speaks for the brilliance of Kasiski’s insight
and the unexpected weakness of the Vigenère
technique.

The index of coincidence is most powerful
when it is based on a large body of data. When
the key is long, the columns are short and the
index is less reliable. Matthews [1986] has pro-
posed an alternative test based on frequency
counts that appears to be more sensitive when
the key is long. It might be interesting to in-
clude this test in the procedure Evaluate.

Autumn 1993 5

Appendix

The sample crypt (note the code V in the first line, for Vigenère):

V

CFMMY ZDAWG BBFII LPMNZ GGSDM ZWNNS DMFOI XHXZU OKMLA MVBOY

DEQTS INEBA GOFYK TZRHC YOHZF HWYUT CFSNI ENKUQ VLWYC YHCIM

ZPGVV MYHVR WINGM PRA

References

Kahn, David, The Codebreakers: the Story
of Secret Writing. New York: Macmillan,
1967.

Gaines, Helen Fouché, Elementary Cryptanal-
ysis. American Photographic Publishing
Co., 1939. Reprinted New York: Dover,

1956.

Matthews, Robert, “An empirical method for
finding the keylength of periodic ciphers.”
Cryptologia, vol. 10, no. 4, pp. 220–224,
1986. Reprinted in Deavours et al., Cryp-
tology: Machines, History, & Methods.
Norwood, Mass.: Artech House, 1989.

KASISK.PAS

Program KASISK;

{

Kasiski analysis of polyalphabetic ciphers (Vigenre,

Beaufort, Variant).

Ciphertext is read from file, not keyboard. (If anything

goes wrong, it’s burdensome to have to renter text

again & again.) See input file format below.

Does Kasiski analysis & lists intervals between repeated

substrings & factors of intervals.

Prompts user for factor to try.

For each factor, program shows letter frequencies for each

column together with index of coincidence (phi) & (for

reference) values of phi for random & monoalphabetic data.

Does cross-correlation with English letter frequencies

to determine three most likely key letters.

Program prompts user for acceptance & (if accepted) for

keyword; displays ciphertext & attempted decryption in

matrix form.

References: for Kasiski, Kahn, "The Codebreakers" & Gaines,

"Elementary Cryptanalysis"; for index of coincidence, Kahn.

Text is represented as array of char in order to have

entire text in a single data structure.

Program organization is essentially sequential:

Reads ciphertext, removes nonalphabetics & converts to

uniform case.

6 Computer Supplement 18

Does Kasiski analysis & displays factors found. For short

messages, repeated substrings of length 2 are accepted;

for longer messages, minimum acceptable substring length

steadily increases.

Evaluates any specified key length, finding letter frequen-

for each column. Uses these frequencies to compute phis

& probable key letters for each column. Normalizes &

averages phis to get confidence level.

Decrypts & displays text.

Weaknesses:

There ought to be some kind of editing capability

so user can experiment with key interactively;

don’t have good way of doing this yet.

Input file format:

First line: encryption method: V for Vigenre, B for

Beaufort, A for vAriant.

Rest of file: cipher text. Upper or lower case,

grouped in any convenient way, max 78 chars/line.

Last line must end in <cr>.

T. Parsons June 22, 1991

Revised May 29, 1993 Streamlined logic in

a few places, improved tabulation from Evaluate,

& added file output proc. Protected user if

method omitted in first line of file.

}

uses crt;

const

max_lgth = 1024; { Max allowable length of cipher text }

maxf = 24; { Largest factor considered }

lastint = 100; { Number of intervals collected }

phi_r = 0.0385; { Kappa for random characters }

phi_p = 0.0667; { Plaintext kappa }

maxk = maxf; { Longest possible key }

type

fstring = string[80];

texttype = array [1..max_lgth] of char;

freqtype = array [’a’..’z’] of integer;

var

ciphr, { Ciphertext }

clear: texttype; { Clear text }

cc,

method: char;

infname: fstring; { Name of file containing crypt }

fact,

msg_lgth: integer;

inf: text;

function OPEN_IN (var inf: text; fname: fstring): boolean; forward;

{$I open_in.inc}

Autumn 1993 7

function OPEN_OUT (var outf: text; var fname: fstring): boolean; forward;

{$I open_out.inc}

{$I agree.inc}

function LOCASE(c: char): char; { Force uniform lower case }

begin

if c in [’A’..’Z’] then

locase := chr(ord(c) + 32)

else

locase := c

end; { LoCase }

procedure READ_NEW; { Inputs new ciphertext }

{ Reads lines from user, converts them }

var { to upper case, forms into screen- }

i, { sized lines }

k, { Index into ciphr array}

col: integer; { Column counter }

lines: integer;

cc: char; { Ciphertext character }

input: string[80];{ Line image }

begin

for k := 1 to max_lgth do

begin { Wipe out old text, if any }

ciphr[k] := ’ ’;

clear[k] := ’ ’;

end;

k := 0;

lines := 0;

readln (inf, input);

if (length(input) <= 2) and (upcase(input[1]) in [’V’, ’B’, ’A’]) then

begin

method := upcase(input[1]);

lines := 1

end

else

method := ’?’;

writeln (’Cipher text:’);

repeat { Until input read in }

if lines > 0 then { If method known, or }

{ past first line, }

readln (inf, input); { read a line }

inc (lines);

if length(input) > 0 then

begin

writeln (’ ’, input); { Display it }

for i := 1 to length(input) do

begin

cc := locase(input[i]);

if cc in [’a’..’z’] then

8 Computer Supplement 18

begin { Squeeze out blanks }

if k < max_lgth then

inc (k);

ciphr[k] := cc;

end

end { for }

end { if }

until eof(inf);

msg_lgth := k;

close (inf);

if k = 0 then

writeln (’No characters read.’)

else if k >= max_lgth then

begin

writeln (’That was ’, max_lgth, ’ characters long or longer.’,

’ I’’ve probably run out of space,’);

writeln (’ but I have the first ’, max_lgth, ’ characters in’,

’ memory and can decrypt them if’);

writeln (’ you want.’)

end

else

writeln(msg_lgth,’ characters.’); { Summarize }

write (’Encryption scheme: ’);

case method of

’V’: writeln (’Vigenere’);

’B’: writeln (’Beaufort’);

’A’: writeln (’Variant’);

’?’: writeln (’Unknown’);

else begin { This should never happen }

writeln (’Not recognized.’);

writeln (’ You may have omitted’,

’ the encryption code in Line 1.’);

method := ’?’

end

end; { case }

end; { Read_New }

procedure KASISKI; { Kasiski analysis procedure. Finds repeated }

{ substrings in cipher text & intervals be- }

{ tween them. Probable period (key length) }

{ is factor of one or more of these intervals.}

var

interval: array [1..lastint] of integer;

factors: array [2..maxf] of integer;

count, { Length of repeated substring }

fact, { (Possible) factor }

i,

inct, { Indexes interval array }

ist, jst, { Start of repetitions }

ic, jc, { Index chars through reps }

kmin: integer; { Min acceptable length }

begin

Autumn 1993 9

writeln (’Kasiski analysis:’);

writeln (’ Interval String Interval String’);

if msg_lgth > 800 then

kmin := 5 { Min. acceptable }

else if msg_lgth > 400 then { length depends on }

kmin := 4 { message length }

else if msg_lgth > 200 then

kmin := 3

else

kmin := 2;

for i := 1 to 100 do { Clear arrays }

interval[i] := 0;

for fact := 2 to maxf do

factors[fact] := 0;

inct := 0;

for ist := 1 to msg_lgth do

for jst := ist + 2 to msg_lgth do { Search for repeated }

begin { substrings (done }

ic := ist; { by brute force) }

jc := jst;

count := 0;

while (jc <= msg_lgth) and (ciphr[ic] = ciphr[jc]) do

begin

inc (count); { Find length of }

inc (ic); { substring }

inc (jc)

end;

if count >= kmin then { Log intervals for }

if inct < lastint then { non-trivial cases }

begin

inc(inct);

interval[inct] := jst - ist;

write (interval[inct]:6, ’’:8);

for i := ist to ist + count - 1 do

write(ciphr[i]);

if odd(inct) then { Format output }

gotoxy (25, wherey)

else

writeln

end

end; { for ist, jst }

if odd(inct) then writeln;

for i := 1 to inct do { Find factors of }

for fact := 2 to maxf do { intervals }

if interval[i] mod fact = 0 then

inc (factors[fact]);

writeln (’Factors, frequencies,’, { List them }

’ & weighted frequencies:’);

for i := 2 to maxf do

write (i:3);

writeln;

for i := 2 to maxf do

write (factors[i]:3);

10 Computer Supplement 18

writeln;

for i := 2 to maxf do

write (round(sqrt(i)*factors[i]):3);

writeln;

end; { Kasiski }

procedure XCOR (var freqs: freqtype; var maxc, maxc2, maxc3: char);

{ Does cross-correlation between column }

{ frequencies & English letter fre- }

{ quencies to find most likely key }

{ letters. Used by Evaluate, below. }

const natfrqs: freqtype =

(80, 16, 32, 36,123, 23, 16,

51, 72, 1, 5, 40, 22, { These are English }

72, 79, 23, 2, 60, 66, 96, { letter frequencies }

31, 9, 20, 2, 13, 1);

var

i, j,

lag: integer; { Current offset }

lmax: { Offsets with max corr }

array[1..3] of integer;

corr: real; { Current correlation }

cmax: { Three largest corrs. }

array[1..3] of real;

c1, c2: char; { Loop indices }

begin

cmax[3] := 0;

for lag := 0 to 25 do

begin

corr := 0;

for c1 := ’a’ to ’z’ do { Compute correlations }

begin

j := ord(c1) + lag - ord(’a’);

if j > 25 then j := j - 26;

if method = ’B’ then { Special handling }

j := 25 - j; { for Beaufort }

c2 := chr(j + ord(’a’));

corr := corr + freqs[c1]*natfrqs[c2];

end;

i := 3;

while i >= 1 do { Update three greatest }

begin

if corr > cmax[i] then

begin

for j := 1 to i - 1 do

begin { Shift others down }

lmax[j] := lmax[j + 1];

cmax[j] := cmax[j + 1]

end;

cmax[i] := corr;

lmax[i] := lag;

i := 0; { Quick exit from loop }

Autumn 1993 11

end; { if }

dec (i)

end { while }

end; { for lag }

case method of { Find corresponding }

’V’: for i := 1 to 3 do { key letters }

begin

lmax[i] := 26 - lmax[i];

if lmax[i] > 25 then lmax[i] := lmax[i] - 26;

end;

’B’: for i := 1 to 3 do

begin

lmax[i] := 25 - lmax[i];

if lmax[i] < 0 then lmax[i] := lmax[i] + 26;

end;

’A’: begin end { Ok as is }

end; { case }

maxc := chr(ord(’a’) + lmax[3]);

maxc2 := chr(ord(’a’) + lmax[2]);

maxc3 := chr(ord(’a’) + lmax[1]);

end; { XCor }

procedure EVALUATE (period: integer); { Assesses this period length }

{ Finds letter frequencies for each }

{ column together with index of coin- }

{ cidence & most likely key letters. }

var

freqs: freqtype; { Letter frequencies }

col, { Current column }

col_hgt, { Number of chars in col}

i: integer;

delta, { Normalized distance }

{ from phi_r to phi }

phi, { Index of coincidence }

sig, { Figure of merit }

sum: real; { Sum of deltas }

c,

cmax, { Most likely keys }

cmax2, cmax3: char;

begin

writeln; { Write headings }

writeln (’Col Frequencies’, ’(phi_r =’:31, phi_r:7:4, ’; phi_p =’,

phi_p:7:4, ’)’, ’Likely’:8);

write (’’:4);

for c := ’a’ to ’z’ do

write (c:2);

writeln (’ Phi f.m. Keys’);

sum := 0;

for col := 1 to period do

begin

write (col:2, ’ ’);

for c := ’a’ to ’z’ do

12 Computer Supplement 18

freqs[c] := 0;

i := col;

col_hgt := 0;

while i <= msg_lgth do { Accumulate }

begin { letter frequencies }

inc (freqs[ciphr[i]]);

inc (i, period);

inc (col_hgt)

end;

phi := 0; { Compute index }

for c := ’a’ to ’z’ do { of coincidence }

phi := phi + freqs[c]*(freqs[c] - 1);

phi := phi/(col_hgt*pred(col_hgt));

delta := (phi - phi_r)/(phi_p - phi_r);

sum := sum + delta;

xcor (freqs, cmax, cmax2, cmax3);

for c := ’a’ to ’z’ do { Show results }

write (freqs[c]:2);

writeln (phi:8:3, delta:7:3, cmax:4, cmax2:2, cmax3:2);

end;

sig := sum/period;

writeln (’Average fig. of merit (near 1 => good):’, sig:7:3);

end; { Evaluate }

procedure DECRYPT (period: integer; method: char);

var { Gets keyword from user & }

i, j, { decrypts message }

ic, ik, ip: integer;

keystr: string[maxk];

begin

repeat { Get & check keyword }

write (’Key: ’);

readln (keystr);

if length(keystr) <> period then

writeln (’Huh???’);

until length(keystr) = period;

for i := 1 to period do { Convert to lower case }

keystr[i] := locase(keystr[i]);

for i := 1 to period do { Decrypt }

begin

j := i;

while j <= msg_lgth do

begin

ic := ord(ciphr[j]) - ord(’a’);

ik := ord(keystr[i]) - ord(’a’);

case method of

’V’: ip := ic - ik; { These are inverses of }

’B’: ip := ik - ic; { defining equations }

’A’: ip := ic + ik; { for encryption }

end; { case }

if ip < 0 then ip := ip + 26 { Keep within range }

else if ip > 25 then ip := ip - 26;

Autumn 1993 13

clear[j] := chr(ip + ord(’a’));

inc (j, period)

end

end

end; { Decrypt }

procedure DISPLAY (period: integer; { Show ciphertext & cleartext }

var ciphr, clear: texttype); { as matrices }

var

i, j,

linecount: integer;

c: char;

begin

i := 0;

linecount := 0;

while i <= msg_lgth do

begin { Ciphertext on left }

for j := i + 1 to i + period do

if j <= msg_lgth then write (ciphr[j]:2)

else write (’ ’:2);

write (’’:6); { Plaintext on right }

for j := i + 1 to i + period do

if j <= msg_lgth then write (clear[j]:2)

else write (’ ’:2);

writeln;

inc (i, period);

inc (linecount);

if linecount mod 22 = 0 then

begin

write (’<cr> for more’);

readln

end

end;

end; { Display }

procedure WRITE_OUT;

var

i: integer;

outfname: fstring;

outf: text;

begin

if open_out (outf, outfname) then

begin

for i := 1 to msg_lgth do

begin

write (outf, clear[i]);

if i mod 65 = 0 then

writeln (outf)

end;

writeln (outf);

close (outf)

14 Computer Supplement 18

end

end; { Write_Out }

{ = = = = = M a i n P r o g r a m = = = = = = = = = = = = = = = = }

begin

lowvideo;

writeln;

writeln (’This is Kasisk [5-21-93].’);

while open_in (inf, infname) do

begin

read_new;

if method = ’?’ then

repeat

write (’ Select V[igenere], B[eaufort], or [v]A[riant]: ’);

readln (cc);

method := upcase(cc);

until method in [’A’, ’B’, ’V’];

if method in [’A’, ’B’, ’V’] { Need this test in case }

then { file written incorrectly }

begin

kasiski; { Find probable periods }

repeat

repeat

write (’Select a factor (0 terminates): ’);

{$I-}

readln (fact);

{$I+}

until ioresult = 0;

if fact > 0 then

begin { Show results for }

evaluate (fact); { this factor }

if agree (’Ok?’) then

begin { Get keyword & decrypt }

decrypt (fact, method);

{ Show results }

display (fact, ciphr, clear);

if agree (’Ok?’) then

begin

fact := 0; { Quick getaway }

if agree (’Write sol to file?’) then

write_out

end

end

end { if fact }

until fact = 0

end { if method }

end; { while }

writeln (’Done.’);

end.

Autumn 1993 15

AGREE.INC

type __ptype = string[80];

function AGREE (prompt: __ptype): boolean;

var

response: __ptype;

ok: boolean;

begin

write (prompt, ’ ’);

repeat

if keypressed then readln;

readln (response);

ok := (response <> ’’) and (response[1] in [’Y’, ’y’, ’N’, ’n’]);

if NOT ok then write (’Huh??? ’);

until ok;

agree := response[1] in [’Y’, ’y’];

end;

OPEN IN.INC

{ File opening procedure.

Directions for use:

Declare OPEN_IN as a forward reference in calling program:

function OPEN_IN (var inf: file;

var fname: fstring): boolean; forward;

& follow immediately with an include directive.

This permits declaring inf & fname as any desired type.

Revised 1-5-88 Made a function

1-8-88 Arranged for removal of option switches

}

function OPEN_IN;

var

i: integer;

work: string[64];

found: boolean;

begin

repeat

write (’Input File [or con:]: ’);

readln (fname);

if (fname = ’’) or (fname = ’con:’) then found := true

else

begin

work := fname;

i := pos (’/’, work);

if i > 0 then work := copy (work, 1, i - 1);

{$I-}

assign (inf, work);

reset (inf);

16 Computer Supplement 18

{$I+}

found := ioresult = 0;

end;

if not found then writeln (’Not found.’);

until found;

if fname = ’’ then

begin

writeln (’No file requested.’);

open_in := false

end

else

open_in := true

end;

OPEN OUT.INC

{ File opening procedure.

Directions for use:

Declare OPEN_OUT as a forward reference in calling program:

function OPEN_OUT (var outf: text;

var fname: fstring): boolean; forward;

& follow immediately with an include directive.

This permits declaring outf & fname as any desired type.

Returns FALSE if user gave null string as file name; this

permits no-output option if desired.

}

function OPEN_OUT;

var _reply: string[16];

_accept: boolean;

begin

repeat

write (’Output File: ’);

readln (fname);

if fname = ’’ then

_accept := true

else

begin

{$I-}

assign (outf, fname);

reset (outf);

{$I+}

_accept := ioresult <> 0;

if not _accept then

begin

write (’File already exists. Okay to overwrite? ’);

readln (_reply);

_accept := (length(_reply) > 0) and (_reply[1] in [’y’, ’Y’])

Autumn 1993 17

end;

end;

until _accept;

if fname = ’’ then

open_out := false

else

begin

{$I-}

close (outf);

{$I+}

if ioresult <> 0 then ;

rewrite (outf);

open_out := true

end;

end;

PRETTY GOOD PRIVACY

Pretty Good Privacy version 2.3a has been re-
leased. It is currently available from archives
in source and executable form. From the doc-
umentation:

Synopsis: PGP uses public-key encryption to
protect E-mail and data files. Communicate
securely with people you’ve never met, with
no secure channels needed for prior exchange
of keys. PGP is well featured and fast, with
sophisticated key management, digital signa-
tures, data compression, and good ergonomic
design.

Quick Overview: Pretty GoodTM Privacy
(PGP), from Phil’s Pretty Good Software, is a
high security cryptographic software applica-
tion for MSDOS, Unix, VAX/VMS, and other
computers. PGP allows people to exchange
files or messages with privacy, authentication,
and convenience. Privacy means that only
those intended to receive a message can read

it. Authentication means that messages that
appear to be from a particular person can
only have originated from that person. Con-
venience means that privacy and authentica-
tion are provided without the hassles of man-
aging keys associated with conventional cryp-
tographic software. No secure channels are
needed to exchange keys between users, which
makes PGP much easier to use. This is be-
cause PGP is based on a powerful new tech-
nology called “public key” cryptography.

PGP combines the convenience of the Rivest-
Shamir-Adleman (RSA) public key cryptosys-
tem with the speed of conventional cryptog-
raphy, message digests for digital signatures,
data compression before encryption, good er-
gonomic design, and sophisticated key man-
agement. And PGP performs the public-key
functions faster than most other software im-
plementations. PGP is public key cryptogra-
phy for the masses.

18 Computer Supplement 18

NOTES FROM THE KEYBOARD

I am now settled in to my new home on the
east coast (see the inside front cover for new
address and BBS information). Just a few
miles from here is Fort Meade, the base for
the National Security Agency. Antennas and
barbed-wire fences are the order of the day
over there.

Cryptography has been in the news several
times recently. In April, the Clinton Admin-
istration announced a new “standard” for se-
cure telephone communications: the Clipper
chip. This chip, while encrypting voices over
a telephone line, would also allow law enforce-
ment officials to decrypt any conversation, os-
tensibly pursuant to a court order. Civil lib-
ertarians and those concerned about privacy
immediately raised the alarm, especially af-
ter the Administration hinted that, if Clip-
per didn’t become widespread, they would ban
other forms of encryption.

Phil Zimmerman, the original author of Pretty
Good Privacy , was recently served a subpoena
to produce all records and documents regard-
ing his program. A Federal Grand Jury in
California is apparently interested in finding
out how his program made it out of the United
States — current US munitions law appears to
prohibit the export of cryptographic software.
PGP is now wide-spread in the US, Europe,
Asia and even in the former Soviet Union.

A large amount of space in this Computer
Supplement is dedicated to program listings.
While few readers will type in all these pro-
grams (it would be easier to get the Issue
Disk), I hope the listings serve to show meth-
ods and approaches to solving problems via
computer. One of the best ways to improve
programming skills is by example, and we’re
trying to provide plenty of examples.

Enjoy the issue, and good solving !

NOTES TO AUTHORS

The Computer Supplement is intended as a fo-
rum to publish articles on the cryptographic
applications of computers. We are always
looking for submissions, but we ask potential
authors to bear in mind:

1. Many readers are new to ciphers; please
include a brief description of the cipher
in question.

2. Many readers are new to computers; ex-
plain why you are using a computer as
well as how.

3. Include the output of a typical run. If
possible, build in an example for the
reader to check the operation. Indicate
how long it took to obtain this result.

4. Include a full description of how the pro-
gram works, and back it up with com-
ments in the listing.

5. Include a table of variables, either sepa-
rately or as a part of the listing.

6. If at all possible, please submit every-
thing in electronic form, either on a disk
(any IBM format) or uploaded to the
ACA BBS. This makes it much easier
for us to typeset.

7. Send material for publication to Dan
Veeneman, PO Box 2442, Columbia,
Maryland, 21045–2442, USA.

Autumn 1993 19

POLLUX REVISITED

BOATTAIL

1. Enter Cipher Digits. Enter the cipher
digits in strings with no spaces between them.
The program will accept a maximum of 600
characters in the input. If your cipher is longer
than that, discard the last part.

Each input string is converted immediately
into characters in an array. When you have
finished the cipher type / as the last character
to tell the program that you are done. The
program asks Is this correct?. If you type
Y the cipher is entered into the working arrays,
if you select N, the cipher is discarded.

If you enter test (all lower case) instead of
the cipher, the program loads the internal test
cipher. This is useful for checking on mod-
ifications and for learning how the program
functions.

2. Find Separators. The program will
try all possible sets of 3 or 4 digits as sep-
arators (x’s) and eliminate all that are im-
possible. When the program asks How many

Separators? type in 3 or 4 as the cipher tells
you. It is barely possible that there will be
two possible sets of separators.

The program displays the possible set(s). If
there is only one, that set is automatically pro-
cessed and the morse text is partially filled in.
If there is more than one set, then the sets are
displayed and you are asked to choose which
one will be filled in.

3. Display Cipher. The ciphertext, morse
text, and plaintext are displayed in lines. The
maximum display is seven sections of three
lines each for a total of 560 characters. If your
cipher is over 560, the rest is not displayed.

4. Change Separators. This option clears
the morse and plain text arrays and fills in a
new set of separator digits. This is rarely used.
There is almost always only one possible set.

5. Substitute in Cipher. The cipher,
morse, and plain arrays are displayed along
with a selection panel at the lower left of the
screen. For the test cipher, the panel looks
like this:

0123456789

xx x

Examine the cipher and select substitutes by
trial and error. Use the left and right arrow
keys to move the cursor along the bottom row
of the panel. If the cursor is under 2 and you
type - then the - is entered for all the 2’s in
the cipher array. If you type a space, the sub-
stitute under the 2’s will be erased.

As you enter substitutes, the program scans
the morse array and looks for complete let-
ter sequences. The complete sequences are
decoded and the plain letter is filled into the
plain array. The plaintext is thus produced.

Hint: Look for xx x x xx. This sequence
can only be “the” and you can fill in the dots
and dashes to make xx-x....x.xx. A simi-
lar attack on short words is the easiest way to
solve a Pollux.

To exit the substitution module, hit the Es-
cape key and you are returned to the main
menu. When you return, the text arrays are
not changed and you can return to them and
continue solving.

6. Hardcopy. Selecting this option pro-
duces a copy of the solving screen on your
printer. The program is written for an Epson
FX printer and uses its control codes. If your
printer is not Epson-compatible, this module
may not work for you. You will have to man-
ually copy the solution off the screen. If you
have a Turbo Pascal compiler, you can modify
the control codes to suit your printer.

20 Computer Supplement 18

POLLUX.BAS

program POLLUX;

{

Written in Borland’s Turbo Pascal 4.0.

Determines separator digits, by trial & error on every combination

from 012 to 789 in procedures ‘compsep3’ for 3 separators and

‘compsep4’ for 4 separators (0123 to 6789).

Puts separators into morse text, displays cipher on screen for solving

plaintext on screen by trial & error.

By BOATTAIL, November 21, 1991. Updated March 16, 1993.

Assumes a color monitor. If you are using a monochrome display,

delete all TextColor commands.

Printer Commands are for an Epson FX dot matrix printer. If your

printer is not Epson-compatible, change or delete the command

strings in procedure ‘hardcopy’

}

USES Crt,Printer,Ciphlib;

{uses ‘morsedecode’ procedure and others from CIPHLIB.TPU, a library

of standard cipher routines in Turbo Pascal 4.0}

CONST

Maxlen=600; {Maximum Characters in input strings}

Maxdisplay=559; {Maximum characters displayed, 7 lines of 80, 0-559}

test1=’345994612783860345075921618092784034650795210678921861435349’;

test2=’529764018527630853607218186249594357306047289108672510756943’;

test3=’832486107529591436813278046905947521361384928765059074623918’;

test4=’182476950125679804078362107534952196431827018627050347526191/’;

{Plain = Most widely used word in the world is ok say language ...}

{E-8 NOV-DEC 1991 by RIG R. MORTIS}

TYPE

line = (num,morse,plain);

VAR

test :String; {test cipher text}

exitflag :Boolean;

selnum :Integer; {menu selection}

intext :txtarr; {cipher input array}

txt :array[line] of txtarr;

clast :Integer; {last element of cipher arrays}

cnum :intarr; {cipher digits in numbers}

flag :Boolean; {general purpose flag}

solnum :Integer; {how many sets of separators found?}

numsep :Integer; {number of separators, 3 or 4}

sepsol :array[0..10,0..3] of Byte; {sep solutions}

opsep :array[0..3] of Byte; {chosen separators}

ddx :array[0..9] of Char; {equivalents, dash, dot or x}

procedure ciphfill;

var x :Integer;

begin

for x:=0 to clast do begin

txt[num,x]:=intext[x];cnum[x]:=Ord(intext[x])-48;end;

FillChar(ddx,Sizeof(ddx),’ ’); {clear dot-dash array to blanks}

FillChar(txt[plain],Sizeof(txt[plain]),’ ’); {clear plaintext}

end;

procedure sepfill(n:Integer); {put chosen separators into dot-dash array}

Autumn 1993 21

var x :byte;

begin

for x:=0 to numsep-1 do begin opsep[x]:=sepsol[n,x];ddx[opsep[x]]:=’x’;end;

end;

procedure morsefill; {fill morse text from dot-dash equivalents}

var x,y :Integer;

begin

FillChar(txt[morse],Sizeof(txt[morse]),’ ’); {clear morse text}

for x:=0 to 9 do

for y:=0 to clast do txt[morse,y]:=ddx[cnum[y]];

end;

procedure displayline(ln:line); {display cipher, morse, or plain}

const wid=80;

var f,g,h,k,t,z :Integer; endflag :Boolean;

begin

g:=0;h:=wid-1;endflag:=false;f:=Ord(ln);t:=0;

repeat

if clast>Maxdisplay then z:=Maxdisplay else z:=clast;{limit display}

if h>z then begin h:=z;endflag:=true;end;

GotoXY(1,1+f+(3*t));Textcolor(f+10);

for k:=g to h do Write(txt[ln,k]);

Inc(t);Inc(g,wid);Inc(h,wid);

until endflag=true;

end;

procedure dispall; {display cipher, morse & plain}

var ln :line;

begin

Textmode(CO80);ClrScr;for ln:=num to plain do displayline(ln);

end;

procedure choosesep; {which set of computed separators do you want to try?}

var w :Integer; flg :Boolean;

begin

if solnum=0 then begin

message(’Only One Possible Set’,Cyan,9,20,false);any_key;end

else begin

digit_in(’Which Separator Set? ’,Blue,1,20,w);Write(w);

yes_no(itc,White,1,24,flg);

if flg=true then sepfill(w);

end;

end;

procedure compsep3; {deduce three separators by trying all combinations}

var b,i,j,k,n,sc,nsc :Integer;

label 650,660,670;

begin

b:=0;

for i:=0 to 7 do

for j:= i+1 to 8 do

for k :=j+1 to 9 do begin

GotoXY(18,12);Write(i,’ ’,j,’ ’,k);sc:=0;nsc:=0;

for n:=0 to clast do begin

if (cnum[n]=i) or (cnum[n]=j) or (cnum[n]=k) then goto 650;

if nsc=4 then goto 670 else begin Inc(nsc);sc:=0;goto 660;

end;

22 Computer Supplement 18

650: if sc=2 then goto 670 else begin Inc(sc);nsc:=0;end;

660: end; {of for n}

sepsol[b,0]:=i;sepsol[b,1]:=j;sepsol[b,2]:=k;Inc(b);

670: end; {of for k}

solnum:=b-1; {number of separator solutions}

end;

procedure compsep4; {deduce four separators by trial}

var b,h,i,j,k,n,sc,nsc,x :Integer;

label 750,760,770;

begin

b:=0;

for h:=0 to 6 do

for i:=h+1 to 7 do

for j:=i+1 to 8 do

for k:=j+1 to 9 do begin

GotoXY(18,12);Write(h,’ ’,i,’ ’,j,’ ’,k);sc:=0;nsc:=0;

for n:=0 to clast do begin

x:=cnum[n];

if (x=h) or (x=i) or (x=j) or (x=k) then goto 750;

if nsc=4 then goto 770 else begin

Inc(nsc);sc:=0;goto 760; end;

750: if sc=2 then goto 770 else begin Inc(sc);nsc:=0;end;

760: end; {of for n}

sepsol[b,0]:=h;sepsol[b,1]:=i;sepsol[b,2]:=j;sepsol[b,3]:=k;

Inc(b);

770: end; {of for k}

solnum:=b-1;

end;

procedure displaysep; {display deduced separator set(s) on screen}

var f,g :Integer;

begin

ClrScr;Textcolor(LightMagenta);GotoXY(1,6);Write(’Separators:’);

for f:=0 to solnum do begin

GotoXY(15,6+f);Textcolor(Cyan);Write(f,’ ’);Textcolor(LightGreen);

for g:=0 to numsep-1 do Write(sepsol[f,g],’ ’);end;

end;

procedure decode; {change morse text to plain}

var x :Integer; strflag,blankflag :Boolean; xstr :Str6;

begin

FillChar(txt[plain],Sizeof(txt[plain]),’ ’);

strflag:=false;blankflag:=false;xstr:=’’;

for x:=0 to clast do

case txt[morse,x] of

’x’ : begin

if (strflag=true) and (blankflag=false) then begin

morsecode(’d’,xstr,txt[plain,x-1]);

strflag:=false;

end;

blankflag:=false;xstr:=’’;

end;

’.’,’-’ : begin xstr:=xstr+txt[morse,x];

strflag:=true;end;

’ ’ : begin strflag:=false;blankflag:=true;xstr:=’’;end;

Autumn 1993 23

end;

end;

procedure instruct; {display instructions while using substitution screen}

begin

GotoXY(1,22);Textcolor(LightGreen);Write(’0123456789’);

Textcolor(LightCyan);

GotoXY(1,24);Writeln(’Use right and left arrows to move cursor’);

Write(’Insert dot, dash, or blank below digit; Escape for Main Menu’);

Textcolor(Red);

end;

procedure substitute; {interactive, trial & error solving on screen}

var x,indx :Integer; a,b :Char; outflag :Boolean;

begin

ClrScr;dispall;instruct;indx:=0;outflag:=false;

repeat

GotoXY(1,23);TextColor(LightCyan);for x:=0 to 9 do Write(ddx[x]);

GotoXY(indx+1,23);

b:=Readkey;

case b of

’ ’,’.’,’-’ : begin ddx[indx]:=b;morsefill;decode;

displayline(morse);displayline(plain);end;

#0 : begin a:=Readkey;

case a of

#77 : indx:=(indx+11) mod 10; {left arrow}

#75 : indx:=(indx+9) mod 10; {right arrow}

end;

end;

#27 : outflag:=true; {escape key}

end;

until outflag=true;

end;

procedure hardcopy; {printout cipher, morse, plain, dot-dash}

const dwon=#0#27#87#49#13; {NUL,Esc,W1,CR} {Double Width On}

dwoff=#27#87#48#13; {Esc,W0,CR} {Double Width Off}

wid=40; {40 chars. per printed line}

var f,g,h :Integer; out :Boolean; ln :line;

begin

Write(Lst,dwon); {double width printing on, CR}

g:=0;h:=wid;out:=false;

repeat

if h>clast then begin h:=clast;out:=true;end;

for ln:=num to plain do begin

for f:=g to h do Write(Lst,txt[ln,f]);

Write(Lst,#10#13); {LF,LF,CR}

end;

Inc(g,wid);Inc(h,wid);Write(Lst,#10); {blank line between rows}

until out=true;

Writeln(Lst,’0123456789’);

for f:=0 to 9 do Write(Lst,ddx[f]);

Write(Lst,dwoff,#13#12); {double width printing off,CR,Form feed}

end;

begin {main body of program}

test:=test1+test2+test3+test4; {test cipher assembled}

24 Computer Supplement 18

exitflag:=false;

repeat

Textmode(CO40); {40 column color}

ClrScr;Textcolor(LightBlue);GotoXY(10,1);flag:=false;

Writeln(’POLLUX CRYPTANALYSIS’);Textcolor(Green);

GotoXY(14,2);Writeln(’By BOATTAIL’^J^J);Textcolor(LightCyan);

Writeln(’(1) Enter Cipher Digits’^J);

Writeln(’(2) Find Separators’^J);

Writeln(’(3) Display Cipher’^J);

Writeln(’(4) Change Separators’^J);

Writeln(’(5) Substitute in Cipher’^J);

Writeln(’(6) Hardcopy’^J);

Writeln(’(0) Exit to DOS’^J);

digit_in(sbn,White,10,24,selnum);

case selnum of

1 : begin

cipherin(test,Maxlen,clast,intext);

yes_no(itc,White,1,24,flag);

if flag=true then begin

squeeze([’0’..’9’],clast,intext);

ciphfill;

end;

end;

2 : begin

ClrSCr;

number_in(’How Many Separators? ’,Red,7,12,3,4,numsep);

if numsep=4 then compsep4 else compsep3;

sepfill(0);morsefill;displaysep;any_key;

end;

3 : begin dispall;any_key;end;

4 : begin displaysep;choosesep;morsefill;end;

5 : substitute;

6 : hardcopy;

0 : begin ClrScr;yes_no(qtp,Red,7,12,exitflag);

end;

end; {of case statement}

until exitflag=true;

Textmode(CO80);Textcolor(White); {80 column color}

end. {of program }

Autumn 1993 25

THE PLAYFAIR CIPHER

Charles Shapiro

Introduction

The playfair cipher was invented in 1854 by
Charles Wheatstone, the physicist who was
also responsible for the measurement tool
known as the Wheatstone Bridge. But it bears
the name of Lyon Playfair, a British politician
who tried to get his foreign office to adopt it.
The playfair cipher is a good medium- security
cipher system for alphabetic text. You can
easily encipher and decipher messages manu-
ally with it, and enciphered messages are more
secure than they are under a monalphabetic
code (such as the Caesar cipher), and easier
to encipher and decipher than a book code
message.

The playfair cipher works on letter pairs; this
makes it less vulnerable to solution by fre-
quency analysis, since the most common let-
ter pairs in english (th and he) comprise a
much smaller portion of the possible letter
pairs than the most common letters do of the
possible letters. It also means that a garbled
code group affects only two letters of the mes-
sage you are trying to send.

Using the playfair cipher

To encipher a message with the playfair ci-
pher, you must first construct the key grid.

This grid must be a square; usually, “i” and
“j” are equivalent in encoded text so that the
key grid is 5 letters on a side. To construct the
grid, first think of a key phrase or word with
no duplicated letters in it. In our example, we
will use the phrase “man bites dog”.

To construct a playfair grid from the key
phrase, first write down the key phrase in 5
letter rows, so:

m a n b i

t e s d o

g

Next, fill in the rest of the grid with the letters
of the alphabet not found in the phrase:

m a n b i

t e s d o

g c f h k

l p q r u

v w x y z

Next, divide your message into letter pairs, in-
serting a null letter (such as “x”) wherever a
letter pair consists of two of the same letter or
the message ends without another letter:

i see no tourists only soldiers

is ex en ot ou ri st so nl ys ol di er sx

The second group and the last group in this
sample message contain nulls to make encod-
ing it possible.

You can find every letter in the message on
the code grid. Each pair of letters on the grid
can stand in only three relationships to each
other: they can share a grid row, they can
share a grid column, or they can share neither
a row nor a column. To encipher a pair of let-

ters which share a row, write down the grid
letter to the right of each member of the pair.
To encipher a pair of letters which share a col-
umn, write down the grid letter below each
member of the pair. In these cases, the grid
wraps around; hence, the letter to the right of
“i” in the code grid given above is “m”. If the
pair of letters to encipher share neither a row
nor a column, their enciphered equivalents are

26 Computer Supplement 18

the letters which are in the same row as the
enciphered letter, and the same column as its
mate.

Hence, to encipher the letter pair “is”, you will
first find “i” and “s” in the cipher grid, above:

m a n b I

t e S d o

The enciphered letter pair is “no”, as follows:

m a N b i

t e s d O

The full enciphered text of the message given
above with the key “man bites dog” is as fol-
lows:

is ex en ot ou ri st so nl ys ol di er sx

no sw sa te kz ub de dt mq xd tu ob dp fn

To decipher an encoded message, simply re-
verse the process explained above; take each
coded pair of letters, find them in your grid,
and look at their relationship. If they share
a row, the plaintext letters are to their left; if
the share a column, the plaintext letters are
above them. If they share neither, the plain-
text letter lies in the same row as the code
letter and the column of its partner.

For added security, you can “transpose” your
playfair key before constructing the code grid.
To transpose a key, write it out and write the
rest of the alphabet beneath it:

m a n b i t e s d o g

c f h k l p q r u v w

x y z

Construct your code grid by reading down this
primary grid, as follows:

m c x a f

y n h z b

k i l t p

e q s r d

u o v g w

This method eliminates the regular structure
of the grid for letters not in your key phrase.

Once you have spent about 15 minutes to mas-
ter this cipher system, you can encipher and
decipher quickly with pencil and paper.

Playfair.c

I have written PLAYFAIR.C to automate the
process of enciphering and deciphering with

the playfair cipher. It is limited in the same
ways as the example cipher used above. En-
ciphered messages contain only lowercase let-
ters; numbers, punctuation, and white space
in plaintext are ignored.

PLAYFAIR.C takes two arguments: an option
string and a key string. The key string must be
enclosed by quotes; duplicate letters, spaces,
and punctuation marks are automatically re-
moved from it. A - must precede the option
string. At this writing, there are three op-
tion strings: -p prints out a copy of the play-
fair cipher table, -d decodes a message with
the argument key, and -t transposes the ar-
gument key as explained above. Options can
be combined in logical orders – -pt prints a
transposed table, -dt decodes using a trans-
posed table. All I/O happens through stdin
and stdout.

Conclusion

I wrote this program for fun and entertain-
ment, so I expect no renumeration for its use.
If you make enhancements to the code, please
let me know about them. Please note that
I will accept no responsibility for the use or
misuse of this encipherment method or this
program. I also make no specific claims about
the security or correctness of the PLAYFAIR.C

code or any version of the playfair program.

Autumn 1993 27

PLAYFAIR.C

/*

name: playfair.c

syntax: playfair [- d | p] [-i] "key string" < infile > outfile

description: Encipher or decipher text files using the playfair cipher

"-d" deciphers text; "-p" prints the playfair cipher table

for the key phrase. "-t" transposes the playfair key table.

Author: Charles Shapiro 23 November 1988

This source code is truly public domain; you may use it for fun or profit,

sell it for whatever the market will bear, or make any modifications to

it you wish. I ask as a matter of courtesy that you credit me with writing

it if you plan to distribute it or a modification of it.

*/

#include <stdio.h>

#include <ctype.h>

#define ROW1 0

#define COL1 1

#define ROW2 2

#define COL2 3

char codetbl[5][5];

static char alphabet[] = {"abcdefghiklmnopqrstuvwxyz"};

int print_sw;

int decode_sw;

int transpose_sw;

/*

This is where we check that we’ve got valid key and option arguments,

and set whatever options need to be set.

*/

int args_ok(arc,arv,keyptr)

int arc;

char *arv[];

char **keyptr;

{

int i;

if((arc > 4) || (arc < 2))

return 0;

*keyptr = 0;

print_sw = 0;

decode_sw = 0;

28 Computer Supplement 18

transpose_sw = 0;

for(i=1;i<arc;i++) {

if((*(arv[i])) == ’-’) {

switch(tolower(arv[i][1])) {

case ’d’:

decode_sw = 1;

if(strlen(arv[i]) > 2) {

if(tolower(arv[i][2]) == ’t’)

transpose_sw = 1;

else {

fprintf(stderr,"\nBad option argument - %c",arv[i][2]);

exit(1);

}

}

break;

case ’p’:

print_sw = 1;

if(strlen(arv[i]) > 2) {

if(tolower(arv[i][2]) == ’t’)

transpose_sw = 1;

else {

fprintf(stderr,"\nBad option argument - %c",arv[i][2]);

exit(1);

}

}

break;

case ’t’:

transpose_sw = 1;

break;

default:

printf("Bad option argument - %c\n",arv[i][1]);

return(0);

}

}

else

*keyptr = arv[i];

}

return(-1);

}

/*

Remove spaces, duplicate letters from key.

*/

void purify_key(inbuf,outbuf)

char *inbuf;

char *outbuf;

{

int i,j,dup;

int in_len;

char *out_ptr;

in_len = strlen(inbuf);

Autumn 1993 29

out_ptr = outbuf;

if(isalpha(*inbuf)) {

*out_ptr = tolower(*inbuf);

++out_ptr;

}

for(i=1;i<=in_len;i++) {

if(! isalpha(inbuf[i]))

continue;

dup = 0;

for(j=0;j<i;j++)

if(tolower(inbuf[j]) == tolower(inbuf[i]))

dup=1;

if(! dup) {

*out_ptr = tolower(inbuf[i]);

if(*out_ptr == ’j’)

*out_ptr=’i’;

++out_ptr;

}

}

*out_ptr=0;

}

/*

Make the playfair key table.

*/

void make_keytbl(codekey)

char *codekey;

{

char *tablptr;

int i;

strncpy((char *)codetbl,codekey,25);

tablptr = (char *)codetbl + strlen(codekey);

for(i=0;i<25;i++) {

if(! strchr((char *)codetbl,alphabet[i])) {

*tablptr = alphabet[i];

++tablptr;

}

}

}

/*

Print out the key table for manual encipher/decipher.

*/

void print_keytbl()

{

int i;

for(i=0;i<25;i++) {

printf("%c ",((char *)codetbl)[i]);

30 Computer Supplement 18

if(! ((i+1) % 5))

putchar(’\n’);

}

}

/*

Get a letter from stdin. Make it lowercase. If it’s a j, make it an i.

*/

int get_letter()

{

int c;

c = getchar();

while((! isalpha(c)) && (c != EOF))

c = getchar();

c=tolower(c);

if(c == ’j’)

c = ’i’;

return(c);

}

/*

Get next pair of letters from stdin, substituting nulls (X’s) where

appropriate.

*/

int get_pair(in_pair)

char *in_pair;

{

static int in_chars[2] = {0,2};

int retval=0;

if(in_chars[0] == EOF)

goto exit_point;

if(in_chars[0] != in_chars[1]) {

in_chars[0] = get_letter();

if(in_chars[0] == EOF)

goto exit_point;

else

in_chars[1] = get_letter();

}

else

in_chars[1] = get_letter();

if(in_chars[1] == EOF) {

*in_pair = (char)*in_chars;

in_pair[1] = 0;

in_chars[0] = EOF;

retval = 1;

goto exit_point;

}

Autumn 1993 31

if(in_chars[0] == in_chars[1]) {

*in_pair = (char)*in_chars;

in_pair[1] = 0;

retval = 1;

goto exit_point;

}

in_pair[0] = (char)in_chars[0];

in_pair[1] = (char)in_chars[1];

retval = 1;

exit_point:

if(retval) {

if(! (in_pair[1])) {

if(in_pair[0] != ’x’)

in_pair[1] = ’x’;

else

in_pair[1] = ’y’;

}

}

return(retval);

}

/*

Find a letter in the key grid.

*/

void find_letter(letter,row,col)

char letter;

int *row;

int *col;

{

int i,j;

*row = EOF;

for(i=0;i<5;i++) {

for(j=0;j<5;j++) {

if(codetbl[i][j] == letter) {

*row = i;

*col = j;

}

}

if(*row != EOF)

break;

}

}

/*

Encipher a message with the playfair cipher.

*/

void encode_playf(inpair,outpair)

char *inpair;

char *outpair;

32 Computer Supplement 18

{

int thecase;

int inpair_coords[4];

int outpair_coords[4];

find_letter(inpair[0],&inpair_coords[ROW1],&inpair_coords[COL1]);

find_letter(inpair[1],&inpair_coords[ROW2],&inpair_coords[COL2]);

if(inpair_coords[ROW1] == inpair_coords[ROW2]) /* Same row. */

thecase = 0;

else

if(inpair_coords[COL1] == inpair_coords[COL2]) /* Same column */

thecase = 1;

else

thecase = 2; /* same neither */

switch(thecase) {

case 0: /* same row. */

outpair_coords[ROW1] = inpair_coords[ROW1];

outpair_coords[ROW2] = inpair_coords[ROW2];

if(inpair_coords[COL1] == 4)

outpair_coords[COL1] = 0;

else

outpair_coords[COL1] = inpair_coords[COL1] + 1;

if(inpair_coords[COL2] == 4)

outpair_coords[COL2] = 0;

else

outpair_coords[COL2] = inpair_coords[COL2] + 1;

break;

case 1:

outpair_coords[COL1] = inpair_coords[COL1];

outpair_coords[COL2] = inpair_coords[COL2];

if(inpair_coords[ROW1] == 4)

outpair_coords[ROW1] = 0;

else

outpair_coords[ROW1] = inpair_coords[ROW1] + 1;

if(inpair_coords[ROW2] == 4)

outpair_coords[ROW2] = 0;

else

outpair_coords[ROW2] = inpair_coords[ROW2] + 1;

break;

case 2:

outpair_coords[ROW1] = inpair_coords[ROW1];

outpair_coords[COL1] = inpair_coords[COL2];

outpair_coords[ROW2] = inpair_coords[ROW2];

outpair_coords[COL2] = inpair_coords[COL1];

break;

}

outpair[0] = codetbl[outpair_coords[ROW1]][outpair_coords[COL1]];

outpair[1] = codetbl[outpair_coords[ROW2]][outpair_coords[COL2]];

Autumn 1993 33

}

/*

Decipher a message with the playfair cipher.

*/

void decode_playf(inpair,outpair)

char *inpair;

char *outpair;

{

int thecase;

int inpair_coords[4];

int outpair_coords[4];

find_letter(inpair[0],&inpair_coords[ROW1],&inpair_coords[COL1]);

find_letter(inpair[1],&inpair_coords[ROW2],&inpair_coords[COL2]);

if(inpair_coords[ROW1] == inpair_coords[ROW2]) /* Same row. */

thecase = 0;

else

if(inpair_coords[COL1] == inpair_coords[COL2]) /* Same column */

thecase = 1;

else

thecase = 2; /* same neither */

switch(thecase) {

case 0: /* same row. */

outpair_coords[ROW1] = inpair_coords[ROW1];

outpair_coords[ROW2] = inpair_coords[ROW2];

if(! inpair_coords[COL1])

outpair_coords[COL1] = 4;

else

outpair_coords[COL1] = inpair_coords[COL1] - 1;

if(! inpair_coords[COL2])

outpair_coords[COL2] = 4;

else

outpair_coords[COL2] = inpair_coords[COL2] - 1;

break;

case 1:

outpair_coords[COL1] = inpair_coords[COL1];

outpair_coords[COL2] = inpair_coords[COL2];

if(! inpair_coords[ROW1])

outpair_coords[ROW1] = 4;

else

outpair_coords[ROW1] = inpair_coords[ROW1] - 1;

if(! inpair_coords[ROW2])

outpair_coords[ROW2] = 4;

else

outpair_coords[ROW2] = inpair_coords[ROW2] - 1;

break;

case 2:

outpair_coords[ROW1] = inpair_coords[ROW1];

outpair_coords[COL1] = inpair_coords[COL2];

outpair_coords[ROW2] = inpair_coords[ROW2];

34 Computer Supplement 18

outpair_coords[COL2] = inpair_coords[COL1];

break;

}

outpair[0] = codetbl[outpair_coords[ROW1]][outpair_coords[COL1]];

outpair[1] = codetbl[outpair_coords[ROW2]][outpair_coords[COL2]];

}

/*

Invert a key.

*/

char *transpose_key(key,inbuf)

char *key; /* the original key. */

char *inbuf; /* The original key with the rest of the alphabet. */

{

int keylen = strlen(key);

char *inbufptr;

char *outbufptr;

int i;

static char transposed[128];

char key_buf[128];

memset(key_buf,0,sizeof(key_buf));

strncpy(key_buf,inbuf,25);

outbufptr = transposed;

for(i=0;i<keylen;i++) {

inbufptr = &(key_buf[i]);

while(*inbufptr) {

*outbufptr = *inbufptr;

++outbufptr;

inbufptr += keylen;

}

}

return(transposed);

}

/*

Main line.

*/

main(argc,argv)

int argc;

char *argv[];

{

char working_key[255];

char *key;

char input_pair[3];

char output_pair[3];

void (*process)();

int output_counter;

if(! args_ok(argc,argv,&key)) {

fprintf(stderr,"\nUsage: playfair [-[d | p]] [-i] \"key string\"");

Autumn 1993 35

exit(1);

}

purify_key(key,working_key);

make_keytbl(working_key);

if(transpose_sw)

strncpy(codetbl,transpose_key(working_key,(char *)&codetbl),25);

if(print_sw) {

print_keytbl();

exit(0);

}

if(decode_sw)

process = decode_playf;

else

process = encode_playf;

output_counter = 0;

while(get_pair(input_pair)) {

(*process)(input_pair,output_pair);

output_pair[2]=0;

output_counter += 3;

if(output_counter > 78) {

printf("%s\n",output_pair);

output_counter = 0;

}

else

printf("%s ",output_pair);

}

putchar(’\n’);

}

ABOUT THIS ISSUE

This issue was produced using Eberhard
Mattes’ excellent EmTEX version of Don-
ald Knuth’s TEX typesetting program, with
help from various style files, especially multi-
col.sty and fullpage.sty.

The .tex file that produced this issue is about
117,000 bytes. It was edited and processed on
an IBM PC clone using a simple ASCII text
editor (MKS Toolkit’s vi). It was printed on
a Hewlett-Packard LaserJet IIIP.

36 Computer Supplement 18

AN AID TO MONOALPHABETIC SOLVING

This is a simple program to aid in the manual
solution of monoalphabetic ciphers. A cipher
text file is read in to an integer array (C(,)
and a frequency count is computed.

The program then waits for the user to enter a
cipher text letter and the plain text letter that
should correspond. The program then updates
the map arrays and re-displays the cipher text,
line by line, with the plain text appearing be-
low. This repeats until the user presses the
ESC (escape) key to exit. In this way the user
can manually observe different selections and
try different assignments until the cipher text

is made plain.

The program makes use of map arrays, which
are simply two arrays that keep track of plain
text/cipher text correspondence. The MC ar-
ray maps cipher characters to plain characters,
that is, MC(cipher letter) = plain letter. The MP
array does the inverse, i.e. MP(plain letter) =
cipher letter. In this program, the uppercase
letters A, B, etc. are mapped to the numbers
1, 2, etc. For example, MC(1) would give the
plain letter that corresponds to the cipher text
letter A.

MONOHELP.BAS

1000 ’ MONOHELP.BAS

1010 ’ Assistance for solving monoalphabetic ciphers by trial and error

1020 ’ Variables:

1030 ’ C(,) Cipher text, in ASCII

1040 ’ P(,) Plain text, in ASCII

1050 ’ F() Frequency counts for each of the 26 letters

1060 ’ MC() Map index of cipher to plain letters

1070 ’ MP() Map index of plain to cipher letters

1080 ’ CC Cipher character (ASCII)

1090 ’ CP Plain character (ASCII)

1100 ’ IC Index into MC() array (cipher)

1110 ’ IP Index into MP() array (plain)

1120 ’ OP Old index pointer into either array (temporary)

1130 DIM C(6,80), P(6,80), F(26), MC(26), MP(26)

1140 ’ INITIALIZE

1150 ’ Set all letter counts and map indexes to zero

1200 FOR I=1 TO 26

1210 F(I) = 0

1220 MC(I) = 0

1230 MP(I) = 0

1240 NEXT I

1250 FOR I = 1 TO 6 ’ Six lines

1260 FOR J = 1 TO 80 ’ 80 characters on each line

1270 C(I,J) = 32 ’ Set all cipher text to space (ASCII 32)

1280 P(I,J) = 32 ’ Set all plain text to space (ASCII 32)

1290 NEXT J

Autumn 1993 37

1300 NEXT I

1310 ’

1320 ’ LOAD DATA FILE

1330 ’

1340 PRINT "Filename";

1350 INPUT F$

1360 OPEN F$ FOR INPUT AS #1

1370 NL = 0

1380 ’

1390 ’ Read in each line of text from the file

1400 ’

1410 IF EOF(1) THEN 1660

1420 LINE INPUT #1, A$

1430 NL = NL + 1

1440 NC = 0

1450 ’ Examine each character in the line of text

1460 ’

1470 FOR I=1 TO LEN(A$)

1480 ’ We can only handle lines with 80 characters or less

1490 IF I > 80 THEN 1640

1500 C=ASC(MID$(A$,I,1))

1510 ’

1520 ’ If letter is lower case (ASCII between 97 and 122), make it

1530 ’ uppercase by subtracting 32

1540 ’

1550 IF C >= 97 AND C <= 122 THEN C = C - 32

1560 ’

1570 ’ If the character is an upper case letter, bump up the frequency count

1580 ’

1590 IF C >= 65 AND C <= 90 THEN F(C-64) = F(C-64) + 1

1600 ’ Filter out any odd characters (less than 32 ASCII)

1610 IF C < 32 THEN C = 32

1620 NC = NC + 1

1630 C(NL,NC) = C

1640 NEXT I

1650 IF NL < 6 THEN 1410

1660 CLOSE #1

1670 ’

1680 CLS

1690 ’ Display the frequency chart

1700 FOR I = 1 TO 26

1710 T$=STR$(F(I))

1720 PRINT CHR$(64+I);":";T$;SPACE$(6-LEN(T$));

1730 IF I = 7 THEN PRINT

1740 IF I = 14 THEN PRINT

1750 IF I = 21 THEN PRINT

1760 NEXT I

1770 PRINT

1780 ’ Display the letter map index

1790 FOR I = 1 TO 26

1800 PRINT CHR$(64+I);"=";

1810 IF MC(I) = 0 THEN 1850

1820 ’ Letter is mapped, so display what it maps to

38 Computer Supplement 18

1830 PRINT CHR$(64+MC(I));

1840 GOTO 1870

1850 ’ Letter isn’t mapped, so leave a space

1860 PRINT " ";

1870 PRINT " ";

1880 IF I = 13 THEN PRINT

1890 NEXT I

1900 PRINT

1910 ’ Display the cipher text, and the current plaintext below it

1920 FOR I = 1 TO NL

1930 PRINT

1940 FOR J=1 TO 80

1950 PRINT CHR$(C(I,J));

1960 NEXT J

1970 PRINT

1980 FOR J=1 TO 80

1990 PRINT CHR$(P(I,J));

2000 NEXT J

2010 PRINT

2020 NEXT I

2030 PRINT

2040 PRINT "Replace Cipher Letter: ";

2050 GOSUB 2740

2060 IF CK = 32 THEN 2050

2070 IF CK = 27 THEN 2830

2080 CC = CK

2090 PRINT CHR$(CC);" with Plain Letter: ";

2100 GOSUB 2740

2110 IF CK = 27 THEN 2830

2120 IF CK <> 32 THEN 2220

2130 ’

2140 ’ Plain letter selected was a space (ASCII 32), so remove

2150 ’ any mapping information for the cipher letter

2160 IC = CC - 64

2170 IP = MC(IC)

2180 MC(IC) = 0

2190 MP(IP) = 0

2200 GOTO 2490

2210 ’

2220 CP = CK

2230 PRINT CHR$(CP)

2240 ’

2250 IC = CC - 64

2260 IP = CP - 64

2270 ’

2280 IF MP(IP) = 0 THEN 2410

2290 ’ The plaintext letter is already used

2300 PRINT CHR$(CP);" is already mapped from ";CHR$(64+MP(IP));

2310 PRINT ", move to ";CHR$(CC);" (Y/N) ? ";

2320 GOSUB 2740

2330 IF CK = 27 THEN 2830

2340 IF K$ = "N" THEN 2680

2350 IF K$ <> "Y" THEN 2320

Autumn 1993 39

2360 ’

2370 ’ Zero indexes for old mappings

2380 MC(MP(IP)) = 0

2390 MP(IP) = 0

2400 ’

2410 OP = MC(IC)

2420 ’ If Cipher letter is already used, clear the old plain text index

2430 IF OP > 0 THEN MP(OP) = 0

2440 MP(IP) = IC

2450 MC(IC) = IP

2460 ’

2470 ’ Generate plain text from cipher text and mapping array

2480 ’

2490 FOR I = 1 TO NL

2500 FOR J = 1 TO 80

2510 ’ Default to whatever is in the cipher position

2520 P(I,J) = C(I,J)

2530 CC = C(I,J) ’ select the cipher letter at this location

2540 ’ If this character isn’t an uppercase letter, skip over it

2550 IF CC < 65 OR CC > 90 THEN 2650

2560 ’ assume there is no letter mapped, and make the plain letter a blank

2570 P(I,J) = 32

2580 IC = CC - 64 ’ convert it to an index into the map array

2590 IF MC(IC) = 0 THEN 2650

2600 ’ There is a plain letter mapped to this cipher letter, so

2610 ’ replace the cipher letter with corresponding plain character

2620 IP = MC(IC)

2630 CP = IP + 64

2640 P(I,J) = CP

2650 NEXT J

2660 NEXT I

2670 ’

2680 GOTO 1680

2690 ’

2700 ’ Get a single letter and return it, uppercase

2710 ’ Allow SPACE to be returned, for undoing a mapping

2720 ’ Also allow ESCape key (27 ASCII) to be returned

2730 ’

2740 K$=INKEY$

2750 IF K$="" THEN 2740

2760 CK = ASC(K$)

2770 IF CK = 27 OR CK = 32 THEN 2810

2780 IF CK >= 97 AND CK <= 122 THEN CK = CK - 32

2790 IF CK < 65 OR CK > 90 THEN 2740

2800 K$ = CHR$(CK)

2810 RETURN

2820 ’

2830 END

40 Computer Supplement 18

WHAT THE OTHER GUY IS DOING

DABASAP (Greg Griffin) is collecting
electronic mail addresses for ACA members.
If you have an Internet, Compuserve or other
electronic mail addresses, contact him at
vlad@holonet.net.

NAGUKENU (James Lancaster) is cur-
rently working on BASIC implementations of
the Haeglin machines. He was an artillery offi-
cer in Korea and used the M-209 “Convertor.”
He is also reworking some BASIC programs to
crack Playfairs. He would like to contact any
others of the Krewe that have interest in either
Haeglin or Playfair.

BINO (W. H. Edwards) continues to juggle
the Chaocipher. Any progress from others ?

GRYPHON (Richard Outerbridge) is
using a Macintosh and writing in C and
68000 assembler, optimizing implementations
of DES and public key for public domain use
and distribution. He asks “Anyone who has
a pubkey to share why not send it out to the
group? Maybe there will come a time when
one reason for going to the CON will be ex-
changing pubkeys face-to-face.”

G4EGG (Wilfred Higginson) interest was
peaked by the reference to QuickBASIC in
CS#17. He asks if there are any book lists
and reviews covering QuickBASIC for the be-
ginner ? Perhaps even a definitive article com-
paring different BASIC dialects ?

Bill Corcoran has even kinder things to say
about Spectra Publishing’s PowerBasic. He
notes the rapid execution speed and the QUAD
integer value it supports, giving a range of 263-
1 as opposed to QuickBasic and TrueBasic’s
231-1 and GW-BASIC’s 215-1.

SCRYER (Jim Gillogy) is alive and well
after the southern California wildfires. Al-
though flames came very close (at one point
even on the roof), after a six hour battle fire-
fighters saved Jim’s house. The extent of his
loss was some burned and scorched trees —
“...not counting the broken front door... it
didn’t occur to us to leave it open for the fire-
fighters to access!” Which brings up an inter-
esting question: How are your cryptographic
materials protected from loss, whether fire,
flood, theft, etc. ?

ACA COMPUTER BULLETIN BOARD UPDATE

The ACA bulletin board system has
made the move with the Editor out east.
The system name is now called decode,
and is available for both electronic mail
(uunet!anagld!decode!dan) and file trans-
fer, 24 hours a day at +1 410 730 6734.

There are several directories for cryptographic
programs:

• /public/aca, containing ACA-related
programs and files, including all issue
disks and submitted programs;

• /public/crypto, containing general
cryptographic programs, files, and doc-
uments;

• /public/des, containing code and exe-
cutables implementing the Data Encryp-
tion Standard;

• /public/pgp, with code, executables
and documents relating to the public key
system Pretty Good Privacy .

