
THE CRYPTOGRAM Summer 1994

COMPUTER

SUPPLEMENT #19

In this issue:

PATTERN SEARCHING BY COMPUTER — D MELIORA describes a method and gives
a Pascal program to perform pattern word searching.

SWAGMAN— BOATTAIL has some help for solving basic transposition ciphers like SWAG-
MAN, and includes his Cipher library.

INTERNET MAILING LIST — Three of the Krewe have started an electronic mailing list
to help in solving cryptograms.

REVIEWS — DAEDALUS has recommendations for three books and a software package.

GW-BASIC CRACKING — A program to decrypt protected GW-BASIC programs.

HIGH PRECISION BASIC — Details about a dialect of BASIC that handles large numbers
with ease.

Plus: News and notes for computerists interested in cryptography, and cryptographers in-
terested in computers.

Published in association with the American Cryptogram Association

INTRODUCTORY MATERIAL

The ACA and Your Computer (1p). Background on the ACA for computerists. (As printed in ACA and
You, 1988 edition; [Also on Issue Disk #11]

Using Your Home Computer (1p). Ciphering at the ACA level with a computer. (As printed in ACA and
You, 1988 edition).

Frequently Asked Questions (approx. 20p) with answers, from the Usenet newsgroup sci.crypt.

REFERENCE MATERIAL

BASICBUGS - Bugs and errors in GW-BASIC (1p). [Also on Issue Disk #11].
BBSFILES - List of filenames and descriptions of cryptographic files available on the ACA BBS (files also
available on disk via mail).

BIBLIOG—A bibliography of computer magazine articles and books dealing with cryptography. (Updated
August 89). [available on Issue Disk #11].

CRYPTOSUB - Complete listing of Cryptographic Substitution Program as published by PHOENIX in
sections in The Cryptogram 1983–1985. (With updates from CS #2,3). [available on Issue Disk #3].

DISKEX - A list of programs and reference data available on disk in various formats (Apple—Atari—
TRS80—Commodore—IBM—Mac). Revised March 1990.

ERRATA sheet and program index for Caxton Foster’s Cryptanalysis for Microcomputers (3p). (Reprint
from CS #5,6,7 and 9) [disk available from TATTERS with revised programs].

BACK ISSUES

$2.50 per copy. All back issues from #1 to #18 are once again available from the Editor.

ISSUE DISKS

$5 per disk; specify issue(s), format and density required. All issues are presently available on two IBM
High Density 3.5 inch (1.44M) floppy disks, archived with PKZIP. For other disk formats, ask. Disks
contain programs and data discussed in the issue. Programs are generally BASIC or Pascal, and almost all
executables are for IBM PC–compatible computers. Issue text in TEX format is available for issues 16 to
current. Available from the Editor.

TO OBTAIN THESE MATERIALS

Write to: Or via Electronic Mail:

Dan Veeneman dan@decode.com

PO Box 2442 or

Columbia, Maryland uunet!anagld!decode!dan

21045-2442, USA.

Allow 6–8 weeks for delivery. No charge for hard copies, but contributions to postage appreciated. Disk
charge $5 per disk; specify format and density required. ACA Issue Disks and additional crypto material
resides on Decode, the ACA Bulletin Board system, +1 410 730 6734, available 24 hours a day, 7 days a
week, 300/1200/2400/9600/14400 baud, 8 bits, No Parity, 1 stop bit. All callers welcome.

SUBSCRIPTION

Subscriptions are open to paid-up members of the American Cryptogram Association at the rate of US$2.50
per issue. Contact the Editor for non-member rates. Published three times a year or as submitted ma-
terial warrants. Write to Dan Veeneman, PO Box 2442, Columbia, MD, 21045-2442, USA. Make checks
payable to Dan Veeneman. UK subscription requests may be sent to G4EGG.

CHECK YOUR SUBSCRIPTION EXPIRATION by looking at the Last Issue = number on your
address label. You have paid for issues up to and including this number.

1

Pattern Searching by Computer
D MELIORA

When we attack an aristocrat, our principal
clues are apt to be be words with a distinc-
tive pattern, such as BOBKSKUI. The repeated
Bs and Ks should tell us something about the
structure of the word, but while some of us
have an uncanny eye for such things, the rest
of us must simply scratch our heads and hope
that inspiration will strike. I’m afraid I find
myself in the latter category. Some of us may
have gotten Raja’s book, Pattern and Non-
pattern Words of 2 to 6 Letters; but that
book stops at six-letter words, while BOBKSKUI
has eight letters. Furthermore, the longer the
word, the more useful such information is apt
to be, because the range of possibilities is less
and so the number to be tried is smaller.

Personal computers make this task much eas-
ier. What we need to be able to do is (a)
search a list of words and (b) test each word
to see whether it matches the given pattern.
The accompanying program, Pat_Dict, car-
ries out both of these steps for us. I will start
by describing step (b), since that is the more
general part of the problem.

Pattern Matching

To test for a match to a given pattern, you
need to characterize the pattern in some way
that is independent of the ciphertext letters
used and that will enable the computer to
make the comparison quickly and easily. You
must be able to show (in our example) that
the first and third letters of any word match-
ing the pattern are the same, that the fourth

and sixth letters are the same, and that oth-
erwise the letters are all different.

I chose to do this by representing the pattern
by a set of chains which connect repeated let-
ters together, together with pointers to the
beginning of each chain. The easiest way to
explain this is to use BOBKSKUI as an example.
Before the search begins, a pattern-forming
procedure goes through the pattern word let-
ter by letter. If the letter has not appeared
before, it is regarded as the beginning of a
chain and the program assigns a pointer to it
which gives its position in the pattern. For
example, B is 1, O is 2. When it reaches a re-
peated letter, it creates a link from the most
recent appearance of that letter to the current
one. So the first letter, B, is linked to the third
letter, B.

The pattern-forming procedure Create_Links
returns an array of links and an array of chain
pointers, the latter indicating where in the
pattern each chain begins. In the links, a value
of 0 indicates the end of the chain. For exam-
ple, for BOBKSKUI we have

Chain pointers: (1, 2, 4, 5, 7, 8)
Links: (3, 0, 0, 6, 0, 0, 0, 0)

So to the program, the pattern is a set of six
chains beginning at the first, second, fourth,
fifth, seventh, and eighth letters in the pat-
tern. The chain beginning at Letter 1 (B)
points to letter 3 (B), and the 0 in position
3 indicates the end of that chain. Or, more
graphically,

2 Computer Supplement 19

B O B SK K U I

3 0 0 6 0 0 0 0r� �6 r� �6

�
�
�
��

�
�
�
�� ? ?

A
A
A
AU

A
A
A
AU

1 2 4 5 7 8

1 2 3 4 5 6 � Chain number

1 2 3 4 5 6 7 8

� Chain pointers

� Character positions
� Pattern word

� Links

Create_Links creates the chains by scanning
the pattern. If the current character is already
associated with a chain (called a class in the
code), its position is added to the end of the
chain; otherwise a new chain is created for the
character.

To test a candidate word, we first see whether
its length is the same as that of the pattern.
If we are starting out with a list of eight-letter
words, this is, of course, unnecessary, but if we
are doing a dictionary search, then we must
use this requirement to speed the program.

If the lengths match, then the procedure
Test_Word uses the pointer and link arrays to
test the candidate. Suppose our candidate is
AGITATES. The procedure runs through the
array of chain pointers. It follows up each
chain, examining each corresponding position
in the candidate and testing whether all the
letters are the same. For example, the first
chain begins with the first letter of the word,
A. The link value for this position is 3, which
means that the third letter must also be an
A. So Test_Word jumps immediately to the
third letter of the candidate and compares it
to A. In this example, the test fails, because
the third letter is I, and the program gives up
on that word right away without checking any
other chains.

Next, suppose the candidate word is
NINETEEN. Now the link tests will be satis-
fied because of the matching Ns and the first
two matching Es. But these tests miss the fact
that the second-last letter is also an E. This
is where the letter-to-chain associations come

in. If all the link tests are passed, Test_Word
then makes sure that all the chains are asso-
ciated with different letters. But Chain 3 = E

and Chain 5 = E, so this word is rejected.

Finally, suppose the word is EVENINGS. The
link tests are passed, and all the chains are as-
sociated with different letters, so this word fits
the pattern. The program can either write this
word to a file or display it on the screen. In
either case, it then goes on to the next candi-
date and continues until the list is exhausted.

This strategy is clumsy to explain, but simple
to implement. A program written in Turbo
Pascal (Version 5) for the IBM PC requires 40
lines of code to set up the link array and 26
lines of code to do the test. The program
would be shorter still, except that I allowed
‘?’ as a match-anything wildcard. (I also al-
lowed capital letters to stand for themselves:
Entering bobkskui now results in a search as
described above; entering AoAkskui makes the
program reject EVENINGS but accept AVAILING
and AWAITING.)

Unpacking a Dictionary

The next question is, where do we get our list
of words? The most obvious source is the dic-
tionary that comes with our spelling checker
or word-processing program. Such a dictio-
nary is stored in a highly condensed form, in
order to save disc space, and figuring out how
to unpack it is where our cryptographic skills
come into play. I cannot provide a general
solution, because different checkers use differ-

Summer 1994 3

ent compression schemes, but I can show you
a case study, using the dictionary that came
with the spelling checker I use.

This dictionary uses a simple compression
scheme based on the fact that consecutive
words in a dictionary tend to begin with two
or more letters the same. For example, the
first word in this dictionary is AARDVARK (they
don’t include A; one-letter words are presumed
to be spelled correctly) and the second word
is AARON. Since these words share the com-
mon prefix AAR-, the second word is not stored
whole, but rather as something like (3)ON.
This means that it is made up of the first
three letters of the previous word, followed by
ON. This borrowing of prefixes from the im-
mediately preceding words is the heart of the
compression system.

When you examine the dictionary itself, you
see nothing like this; the letters are not visi-
ble in the dump, which means that they are
not represented by standard ascii codes. It’s
pretty obvious that they have been further
compressed. One cracks a compressed dictio-
nary the way one would crack anything else,
working from a known plaintext whenever pos-
sible, and we have AARDVARK and AARON. A
good starting guess is that the letters are rep-
resented by their positions in the alphabet;
thus AARDVARK would be 1, 1, 18, 4, 22, 1,
18, 11, or, in hexadecimal (as they will appear
in a typical dump), 01 01 12 04 16 01 0B.
I saw nothing like this, either. But then, in
scanning the dump, I found 00 00 11 03 15

01 8A, not at the beginning of the file but 128
bytes down. These numbers are just off by 1
from my initial guess. So I was close: the let-

ters are represented as offsets from the letter
A. Also the presence of that 8A suggested that
the high bit was being used to mark the end
of a word. (I found later that the first 128
bytes contained pointers to the first word for
each letter—like a thumb-index—so a search
for a specific word could start with any desired
letter without scanning through the whole dic-
tionary.)

The next word, AARON, should then have been
(3) 0E 8D, where 0E is the letter O and 8D

is N with the 8 indicating the end of the
word. What I found was 2E 8D. Now we
must scratch our heads; the count of repeated
letters has to be somewhere in that leading
2. How many bits do we need to represent
the letters themselves? Four aren’t enough; it
must be 5. So the assignment of bits within
each byte is probably

s x x a a a a a

where s is the sign bit, representing the end
of the word and the a bits contain the letter.
What we have is

s x x a a a a a

0 0 1 0 1 1 1 0 (2E)

1 0 0 0 1 1 0 1 (8D)

So the xx bits in 2E must give the number
3. But xx = 01, the number 1. Maybe the
length is 2 greater than this? After all, if the
number of repeated letters is only 1 or 2, you
might just as well repeat them without com-
pressing them. Comparing the next two or
three words made this look like a good bet.
Using it as a working hypothesis, I began to
write Get_Word. I wrote (in Turbo Pascal),

icc := unpack; { Unpack returns a byte from the file }

low5 := icc and $1F; { Low 5 bits contain letter offset }

top3 := icc shr 5; { Shift right to isolate top 3 bits }

count := (top3 and 3) + 2; { Isolate xx bits and add 2 }

This computation is done only on the first
character of the word, and the program trun-
cates the working string to the length given by
count before tacking on any new characters.

This procedure carried me through AARDVARK,
AARON, ABACK, ABACUS, and ABANDON, but
then I encountered 07 04 83, and my pro-
gram couldn’t handle that. But this word

4 Computer Supplement 19

is ABANDONED, which has the first 7 letters in
common with the preceding word. Perhaps
the rule was, if the variable top3 was zero,
then this byte wasn’t a letter, but just the
count alone. That would account for the 07,
and the 04 83 would supply the -ED.

The more I thought about this, the better it
sounded. The xx bits can represent any num-

ber from 1 to 3, and when you add 2, they
cover a range from 3 to 5. Thus any number
greater than 5 is clearly out of range and would
have to be represented by a byte of its own.
When you remove prefixes this long, however,
you are saving so much storage that you can
easily afford a full byte for the count. So I
revised the last line of my code to read,

if top3 = 0 then

count := icc { Long prefix }

else

count := (top3 and 3) + 2; { Short prefix }

For the sake of brevity, I will omit the remain-
ing details here, but what I have shown you is
the key. You need a flag to tell when you are at
the beginning of a word; when you are, you in-
terpret the byte as I have described and trun-
cate the previous word to the indicated length
in order to obtain the start of the new word.
After that, you simply append letters. When
the high bit of icc is a 1, you have reached
the end of a word. (There is also special han-
dling for the apostrophe, which is stored un-
encoded.) The program for doing all this re-
quires 36 lines of Pascal. As a test, I used the
program to extract the first 6,000 words from
the dictionary. When I fed the files contain-
ing these words back to the spelling checker,
it reported no errors.

I have not examined any dictionaries other
than this one, but in view of the fact that these
files are coded for economy of storage rather
than for encryption, I would not expect any
dictionary to present serious problems, espe-
cially since any coding scheme must be simple
enough for the program to be able to read and
unpack the dictionary quickly. A familiarity
with some of the standard data-compression
techniques might be handy in some cases.

If you write your unpacking routine as a pro-
cedure along with the word-test routines I de-
scribed previously, you can feed the pattern,

BOBKSKUI, to the resulting program and get a
list of seven words:

AVAILING AWAITING EVENINGS IMITATED

IMITATES IMITATOR RARIFIED

On my system, this takes about 45 seconds,
of which most of the time is taken by reading
and unpacking the dictionary. In the crypt
in which I found this word (A-11, by Funbug,
from the Sept.–Oct., 1979 Cryptogram), the
correct word turned out to be AWAITING.

Summary

Whether a program like this increases or re-
duces the pleasure of doing aristocrats is for
you to say. For me, the pleasure was in the in-
genuity and detective work in writing the pro-
gram itself—that and the feeling that I was
putting a foot, or at least a couple of toes,
onto the professionals’ turf. No doubt this is
true for many people who do computer-aided
cryptanalysis; maybe for them the appropri-
ate wish is not “Good solving,” but “Good
programming.”

References

Raja [R. V. Andree], Pattern and Nonpattern
Words of 2 to 6 Letters. Norman, Okla.,
1977.

Summer 1994 5

PAT DICT.PAS

Program PAT_DICT;

{$R+

Program for finding words matching a given pattern.

For use with the Word+ dictionary. Using filetype FILE &

Unpack faster than using filetype FILE OF BYTE & doing

Reads (ca 11 seconds vs 50 seconds for a search).

Operation:

Reads pattern from console; then words from file & lists words

matching the pattern.

(In this version, reads & decodes words from spelling

dictionary used by The Word (TM) spelling checker.)

If output file requested, writes matching words to output

file; otherwise lists them on console or printer.

Pattern can consist of single digits or single alphabetics;

any lower-case alphabetics may be used. UPPER-CASE al-

phabetics are literals: these are characters which must

match exactly. The special character "?" is a match-anything

wildcard: characters in this position are excluded from

consideration, as described below.

Logic:

Analyzes the pattern entered by user into a set of linked

lists (represented by arrays). Each list begins at the

first instance of a given pattern element; the list item

is the subscript of the next instance of that element

(& 0 if there is no next instance).

Also produces a list of equivalence classes, one for each dif-

ferent pattern element. The ith element of the Class array

points to the ith different pattern element.

Example: the pattern, abbcbba generates the classes,

(1, 2, 4). Class[1] points to the first a; Class[2]

points to the first b; Class [3] points to the c.

Each element of the class array also points to the head of one

of the linked lists. Since the lists are disjoint, they are

contained in a single array of bytes, named Link.

Example: for abbcbba, Link = (7, 3, 5, 0, 6, 0, 0).

The characters which must be the same are found by using the

Class pointer to locate the start of the list & then fol-

lowing the chain of subscripts until a 0 is reached.

Example: for abbcbba, Class[2] = 2; that is, it points

to Link[2], which is the head of a list. If you fol-

low up this list, you get (2, 3, 5, 6); these are the

locations of the b’s in the pattern, & they give the

6 Computer Supplement 19

locations of the four characters which must be the

same in any word which matches the pattern.

To test an unknown word for a match to the pattern word, the

program loops through the Class array & follows up each

linked list pointed to by Class[i] as described above. The

requirements for a match are:

(a) All characters in any list must be the same;

(b) all characters in different equivalence classes

must be different.

A pattern symbol of "?" is a match-anything wildcard; charac-

ters in positions marked by ?s may be anything. They belong

to no equivalence classes, they are ignored by Test_Word,

they need not be all the same, & they need not be different

from any of the identified equivalence classes.

This strikes me as very complicated, but all the complication

occurs in forming the Class & Link arrays, which is done

only once, at the start; it does match testing very quickly

& correctly & does it just the way one would want. Reads,

unpacks, & checks words in The Word Plus dictionary in about

45 seconds on an AT-type machine (& about 11 seconds with

a 386 at 25 MHz).

Uses no floating-point arithmetic.

T. Parsons Aug. 2, 1990

Revised June 26, 1991 Enabled repeated searches

May 30, 1993 Simpler logic in Create_Links;

added search of updict;

added pause on full screen.

}

uses crt, dos, etime;

const

lmax = 32; { Max. acceptable word length: }

{ must be < 255 (32 chars is }

{ long enough to accommodate }

{ ’honorificabilitudinitatibus’}

{ with 5 chars to spare). }

signature: string = ’T. Parsons, May 30, 1993’;

buffsize = 256; { Input buffer length }

bs1 = buffsize - 1;

blks = buffsize div 128; { Number of blocks read }

type

fstring = string[72]; { For file names }

wtype = string[lmax]; { For words & pattern }

ltype = array [1..lmax] { For links & classes }

of byte;

litrec = record { Key for literal test }

pos: integer; { Where to look }

let: char; { What you should find }

Summer 1994 7

end;

litlist = array [1..lmax] of litrec;

buffarray = array [0..bs1] of byte;

var { Globals }

ibuf: buffarray; { Input buffer }

literals: litlist; { Literals in pattern }

pstring: wtype; { Pattern }

class, { Array of equivalence classes }

link: ltype; { Links to characters }

attribs: word; { File’s attributes }

ipoint, { Input buffer pointer }

lgth, { Pattern length }

lgth2, { " " + 1 }

lines, { Output line count }

llgth, { Cumulative output line length }

nclass, { Number of equivalence classes }

nlits: integer; { Number of literals in pattern }

device: char; { Output device code }

fname: fstring;

main_done, { True: ^Z in main dictionary }

done: boolean; { True: ^Z in upd dictionary }

inf: file;

upd: text;

{ Local to Main }

mcount: integer; { Count of matching words }

t_word: wtype; { Word being tested }

writing: boolean; { True => output enabled }

outf: text;

{$I select.inc } { For selecting output device }

{$I agree.inc }

procedure CREATE_LINKS (pstring: wtype; lgth: integer;

var class, link: ltype; var lits: litlist;

var nclass, nlits: integer);

{ Analyzes the pattern & makes equiva- }

const { lence-class & link arrays }

caps: set of char = [’A’..’Z’];

var

i, { Loop }

j: integer; { counters }

cc: char; { Current char. }

found: boolean;

begin

for i := 1 to lgth do { Link is initialized to 255 through- }

begin { out; as links are found, 255’s are }

class[i] := 0; { replaced by link values; 255 thus }

link[i] := 255; { identifies unlinked positions }

end;

nlits := 0;

nclass := 0;

for i := 1 to lgth do { Loop through pattern }

8 Computer Supplement 19

begin

cc := pstring[i];

if cc in caps then { Literal: }

begin

inc (nlits);

lits[nlits].pos := i;

lits[nlits].let := cc;

end { if }

else if cc <> ’?’ then { Not a wildcard }

begin

link[i] := 0;

found := false;

j := 1; { Already in a chain? }

while (j <= nclass) and not found do

if cc = pstring[class[j]] then

found := true

else

inc (j);

if found then { --yes: }

begin

j := class[j]; { Go out to end }

while link[j] <> 0 do { of chain }

j := link[j];

link[j] := i

end

else

begin { --no: }

inc (nclass); { Create new class }

class[nclass] := i { for this character }

end

end { else }

end; { for i }

write (’Letter classes: ’); { Show the results }

for i := 1 to nclass do

write (class[i]:3);

writeln;

write (’Links: ’);

for i := 1 to lgth do

write (link[i]:4);

writeln

end; { Create_Links }

function UNPACK: byte; { Returns one input byte from file }

begin { NB: When last block read, Eof }

if ipoint > bs1 then { immediately goes True; hence }

if not eof(inf) then { i/o loop must not terminate }

begin { on Eof, or contents of last }

blockread (inf, ibuf, blks); { block will not be unpacked. }

ipoint := 0; { This code leaves IPoint > bs1 }

end; { when Eof makes BlockRead im- }

if ipoint < buffsize then { possible; i/o loops should }

unpack := ibuf[ipoint]; { terminate on IPoint > buff- }

inc (ipoint) { size & eof(inf). }

Summer 1994 9

end; { Unpack }

procedure GET_WORD (var workstring: wtype);

var { Unpacks & decodes a word }

icc, { from the Word+ dictionary }

top3: byte; { On first call, workstring }

count, { must be blank, & first }

low5: integer; { call must access beginning }

cc: char; { of dictionary (can’t start }

new_word: boolean; { downstream). }

begin

new_word := true;

repeat

icc := unpack; { Get a byte }

top3 := icc shr 5; { Separate code & char }

low5 := icc and $1f;

if low5 = 26 then main_done := true;

if low5 < 26 then low5 := low5 + ord(’A’);

cc := chr(low5); { Convert character }

if not main_done then

if new_word then

begin

if top3 = 0 then

count := icc

else

count := (top3 and 3) + 2;

workstring[0] := chr(count);

new_word := false;

if top3 <> 0 then

workstring := workstring + cc;

end

else

workstring := workstring + cc;

if icc and $80 <> 0 then

new_word := true

until new_word or main_done or done

end; { Get_Word }

function TEST_WORD (var t_word: wtype): boolean;

var { Examines word for match }

i, j, { to pattern }

nc, { Equiv. class counter }

jfrom, { Previous link }

jto: integer; { Current link }

cc: char; { Char for this class }

ok: boolean; { True => match }

label

quick_exit;

begin

ok := true; { Innocent until proved guilty }

nc := 0;

while ok and (nc < nclass) do { Loop through classes }

begin

10 Computer Supplement 19

inc (nc);

jfrom := class[nc]; { Examine new class }

cc := t_word[jfrom];

while ok and (link[jfrom] <> 0) do { Traverse list for }

begin { this class; linked }

jto := link[jfrom]; { chars must be all }

if t_word[jto] = cc then { the same }

jfrom := jto

else

ok := false;

end;

end; { loop on classes }

if ok then { Now make sure all classes }

for i := 1 to pred(nclass) do { different }

for j := succ(i) to nclass do

if t_word[class[i]] = t_word[class[j]] then

begin

ok := false;

goto quick_exit { Abort on any match }

end;

quick_exit:

test_word := ok;

end; { Test_Word }

function LITERAL (t_word: wtype): boolean;

var { Checks for match of literals }

i: integer; { if any. Returns True if }

ok: boolean; { literals match or if no }

begin { literals; false otherwise. }

ok := true;

i := 1;

while ok and (i <= nlits) do

if upcase(t_word[literals[i].pos]) <> literals[i].let then

ok := false

else

inc (i);

literal := ok

end; { Literal }

procedure CHECK (t_word: wtype); { Tests word & displays }

begin { if match found }

if literal(t_word) and test_word(t_word) then

begin { Found a match: }

inc (mcount); { write it. }

write (outf, t_word:lgth2);

llgth := llgth + lgth2;

if llgth >= 80 then { For formatting output }

begin

writeln (outf);

inc (lines);

if not writing and (lines > 23) then

if agree (’More?’) then

lines := 1

Summer 1994 11

else

begin

main_done := true;

done := true

end;

llgth := lgth2

end

end

end; { Check }

{ = = = = = = = = M a i n P r o g r a m = = = = = = = = = = = = = }

begin

writeln (’This is Pat_Dict [6-26-91].’);

assign (inf, ’e:\text\maindict.cmp’);

getfattr (inf, attribs); { Make dictionary readable }

setfattr (inf, attribs and $FE);

assign (upd, ’e:\text\updict.cmp’);

getfattr (upd, attribs); { Make dictionary readable }

setfattr (upd, attribs and $FE);

ipoint := maxint;

write (’Pattern (? for wildcards, caps for literals,’,

’ <cr> to quit): ’);

readln (pstring);

lgth := length(pstring);

while lgth > 0 do

begin

lines := 0;

reset (inf);

seek (inf, 1); { Bypass directory }

create_links (pstring, lgth, class, link,

literals, nclass, nlits);

repeat until select_output (outf, device, fname);

writing := device = ’F’;

mcount := 0;

lgth2 := lgth + 2;

llgth := lgth2;

main_done := false;

done := false;

timer (0); { Start timing the search }

writeln (’Searching main dictionary.’);

repeat

get_word (t_word);

if not main_done then

if length(t_word) = lgth then

check (t_word)

until main_done;

reset (upd);

if not writing then { Output formatting details }

begin

lgth2 := lgth + 2;

llgth := lgth2;

if wherey > 1 then

12 Computer Supplement 19

writeln

end;

writeln (’Searching supplementary dictionary.’);

repeat

readln (upd, t_word);

if not done then

if length(t_word) = lgth then

check (t_word)

until done or eof(upd);

if wherex > 1 then writeln;

timer (1); { Report search time }

if mcount = 0 then

begin

write (’No match found’);

if writing then

writeln (’; output file empty.’)

else

writeln (’.’);

end

else

writeln (mcount, ’ matching word(s) found.’);

if writing then close (outf);

{ Query for next time }

write (’Pattern (? for wildcards, caps for literals,’,

’ <cr> to quit): ’);

readln (pstring);

lgth := length(pstring);

end; { while }

close (inf);

setfattr (inf, attribs); { Restore dictionary attributes }

close (upd);

setfattr (upd, attribs); { Restore dictionary attributes }

end.

SELECT.INC

{ Output selection utility. Prompts user for choice of crt, printer,

or file; if file selected, tries to open it. Returns result: true

if crt or printer selected or if output file requested. }

function OPEN_OUT (var outf: text;

var fname: fstring): boolean; forward;

{$I open_out.inc }

function SELECT_OUTPUT (var outdev: text;

var device: char; var fname: fstring): boolean;

begin

write (’Output to C[onsole], P[rinter], S[erial port], or F[ile]? ’);

repeat

device := upcase(readkey);

Summer 1994 13

write (device);

readln;

select_output := true;

case device of

’P’: begin

assign (outdev, ’lpt1’);

rewrite (outdev);

write (outdev, #27, ’N’, #10);

end;

’S’: begin

assign (outdev, ’com1’);

rewrite (outdev);

end;

’C’: begin

assign (outdev, ’con’);

rewrite (outdev)

end;

’F’: select_output := open_out (outdev, fname);

else write (’Huh??? ’);

end; { case }

until device in [’P’, ’F’, ’C’, ’S’];

end; { Select_Output }

AGREE.INC

type __ptype = string[80];

function AGREE (prompt: __ptype): boolean;

var

response: __ptype;

ok: boolean;

begin

write (prompt, ’ ’);

repeat

if keypressed then readln;

readln (response);

ok := (response <> ’’) and (response[1] in [’Y’, ’y’, ’N’, ’n’]);

if NOT ok then write (’Huh??? ’);

until ok;

agree := response[1] in [’Y’, ’y’];

end;

14 Computer Supplement 19

SWAGMAN CIPHER
BOATTAIL

The SWAGMAN cipher is a basic transpo-
sition cipher based on a numbered block of
squares. The most common periods (block
sizes) are 4, 5, and 6. A typical SWAGMAN
block of period 4 looks like this:

1432

4213

3124

2341

In the columns and rows, no number is re-
peated. Enciphering in SWAGMAN using this
block produces the following:

Plain: THET RUEB EAUT YO

FTHE COMP UTER LI

ESIN ITSF LAWL ES

SREP ETIT IONE TO

Cipher: TSHP RTMT EAEE YS

STIT EOSB ITWT TI

EREE ITEP LOUR EO

FHEN CUIF UANL LO

Cryptogram: TSEFS TRHHI EEPTE NREIC

As you can see, each column of the block
is shifted according to the corresponding key
numbers in the SWAGMAN square. The
plaintext letters in squares numbered 1 are
transposed into the first row of the ciphertext,
those numbered 2 into the second row, and so
on. The nulls ETO are added at the end of the
plaintext to fill out the columns (Ref. ACA
and You, page 50).

The main cryptanalytic weakness in this sys-
tem is the relatively limited number of keys.
Each row of the key square contains a simple
rearrangement of 4 numbers. The number of
possible rearrangements of 4 numbers is 4 fac-
torial, that is 4x3x2x1 which equals 24. Each
of the four rows contains one of only 24 pos-
sible keys. For squares of 5, 6, 7, and 8 there
are 120, 720, 5040, and 40,320 possible keys,

respectively. Periods 7 and 8 are rarely used in
Cryptograms, and are not deciphered by this
program.

It would be quite possible for a cryptanalyst
to manually try all 24 keys in period 4 and,
with a lot of time and patience, to try the 120
keys in period 5. Manually trying 720 keys for
period 6 is too much. This is essentially ‘grunt
work’, the kind that computers were designed
to do.

The program SWAGMAN.PAS attacks the cipher
by brute force, that is, it tries every possible
key arrangement, stores each result, and then
analyzes each result to find those that best re-
semble plain language. The user then chooses
the correct lines of plaintext from the display
and joins them together to read the complete
message.

The first part of the program contains the
three test ciphers. There is a test cipher for
periods of 4, 5, and 6 to aid in testing any
modifications to the program. This test cipher
is entered into the working program by typing
test4, test5, or test6 when prompted by the
cipher input module.

The three pattern arrays hold the basic num-
ber patterns used to generate all possible keys.
For purposes of brevity, I chose to program in
only one subset of numbers and then rotate
them to produce the full pattern. The pat-
tern 0123 is rotated to provide patterns 1230,
2301, and 3012. This cuts the size of the test
pattern arrays by a factor equal to the cipher
period.

The first step in using the SWAGMAN program
is to enter the cipher. A maximum length of
288 cipher letters is allowed for, not including
spaces. Procedure SWAGCIPHERIN takes the in-
put in lines and puts it into character array
INTEXT. All input spaces are removed by pro-
cedure SQUEEZE. PERIODCHECK does a simple
test to determine which periods are possible;
since there can be no incomplete columns in a

Summer 1994 15

SWAGMAN, the cipher length must be evenly
divisible by the period.

The next step is to correlate the cipher. De-
pending on the main menu choice, the period
is set and master module CORRELATE trans-
poses the cipher. If you choose the wrong pe-
riod, you can return to the main menu and
simply choose another.

INITIALIZE sets the block sizes, number of
blocks, and size of last block, for the period
chosen. The cipher text is arranged into blocks
by FILLBLOCKS.

ASSEMBLESOLUTIONS is the module that de-
rives every possible decipherment. The results
are fed into solarray, character by character,
using the pattern array allposs to control the
transposition.

DIGRAPHCHECK compares the results in
solarray, digraph by digraph, with the En-
glish digraph frequencies in file DIGRAMS.DAT,
which are downloaded into array table by
procedure LOADDIGRAPHTABLE at the begin-
ning of the program. The scores and the loca-
tion of each score are posted to arrays score
and location respectively.

SOLBUBBLESORT sorts the two arrays score

and location into descinding order of the
scores. This means that the locations with
the best scores and the closest resemblance
to plaintext are put at the top. When
you choose Display All Solutions from the
main menu, the procedure DISPLAYSOLUTIONS
prints the solutions on the screen in the order
of the location array.

There are two Hardcopy options on the main
menu; you can either print out the best 20 so-
lutions or all the solutions. If the period is 6,
there are 720 solutions, which takes about 12
pages to print. There are no printer-specific
codes in the HARDCOPY procedure so it should
work well with almost any printer.

This program has worked well with every
Swagman cipher I have tried it on. Most of
the plaintext lines are in the first 10 line dis-
played. If one line contains nulls, or unusual
digraphs, it will score lower and you will need
to search farther down the list.

Happy solving!

OUTPUT FROM ‘test5’ CIPHER:

UNDELDYEAPSOFFREITHORNES

UNDREDYEARSOFAGEITBURNED plaintext

DOFLEGENDONREACHINGFIVEH plaintext

ITSREFONARYREAGOMWBUSEAD

UESALDTHEPSHOEREXAROREQQ

UEDPLDTEIPSHFFREXTOOREER

IOFANFENERYREENOINROSVEQ

HESPHOTNIXPHEFAIXWOUSEAR

THEPHOENIXISAFABULOUSBIR plaintext

ITFRNFONARYREANOMNBOSEED

ITSELFONAPYREFROMWHOSEAS plaintext

TNDRNOYEARIOFANBITBOSNED

UTEPEDONIRSRAFGEMLOUREIR

HESANOTHERPHOENIXAROSEQQ plaintext

UODPEDEEIRSRFFGEITOURVER

(105 more lines)

SWAGMAN.PAS

program SWAGMAN; {Uses brute force to decipher Swagman Cipher

in periods 4, 5, & 6}

USES Crt,Dos,Printer,Ciphlib; {uses CIPHLIB library routines}

CONST

test41=’UTEON ITOKE ESANE VEEPE EANPO MDIRS UORTO ACFEO FEOCO OTFFR’;

test42=’LLHDE OUCEF EABTI LEDBT VE/’;

{MA93 E-20 G4EGG ‘To keep out of trouble one needs a cool head but even

16 Computer Supplement 19

more effective is a pair of cold feet.}

allposs4 :array[0..5,0..3] of Integer =((0,1,2,3),(0,1,3,2),(0,2,1,3),

(0,2,3,1),(0,3,1,2),(0,3,2,1));

test51=’UIDTH HNTEO SSDFE LPAER NEHEL DFGOO EYOTE NHENN DIEAA ROXRP’;

test52=’SYNIP SORHR EOFEA AFEFA NCAGR EOHBI UIMXI WATNL GORHB OFUUO’;

test53=’RSISS BNEEV AQEEI HRQSD/’;

{SO92 E-19 ZYZZ ‘The phoenix is a fabulous bird of legend. On reaching

five hundred years of age it burned itself on a pyre from whose ashes

another phoenix arose QQ key = 30412,24301,01243,12034,43120}

allposs5 :array[0..23,0..4] of Integer =

((0,1,2,3,4),(0,1,2,4,3),(0,1,3,2,4),(0,1,3,4,2),(0,1,4,2,3),

(0,1,4,3,2),(0,2,1,3,4),(0,2,1,4,3),(0,2,3,4,1),(0,2,3,1,4),

(0,2,4,1,3),(0,2,4,3,1),(0,3,1,2,4),(0,3,1,4,2),(0,3,2,1,4),

(0,3,2,4,1),(0,3,4,1,2),(0,3,4,2,1),(0,4,1,2,3),(0,4,1,3,2),

(0,4,2,1,3),(0,4,2,3,1),(0,4,3,1,2),(0,4,3,2,1));

test61=’DTTLESKHANIEEGAMSYHSAAHTHHTWRAUYORONRMDINANRKDNEIGENBRCELAVRSSAFOE’;

test62=’TWEOONRDNSOENHMRTNERMSEAITTCRCRAKTENUIEEIENTWTSNOCGEWAOIDFRTCHHIMA’;

test63=’APEEUPODLUHIASTNWSOERETERHRNRDEDNVSSIUSREHRWCEIAVELMGYOOEEESSPARBA’;

test64=’LNKUTNSDADWADHINRCENEEAOONIMJETUAPSNSSESIGWETTRRDAHEAA/’;

{Lightning can strike twice in the same place. Just ask Mary Lowenstein of

Hudson, New York, who operates a home based secretarial services business.

When a thunderstorm caused a power surge and damaged the hard drive of her

new computer, she lost an entire day’s work. Reformatting the hard drive

and reinsta. keys=514023,240531,453102,031254,302415,125340}

allposs6 : array[0..119,0..5] of Integer =

((5,0,1,2,3,4),(5,1,0,2,3,4),(5,2,0,1,3,4),(5,3,0,1,2,4),(5,4,0,1,2,3),

(5,0,1,2,4,3),(5,1,0,2,4,3),(5,2,0,1,4,3),(5,3,0,1,4,2),(5,4,0,1,3,2),

(5,0,1,3,2,4),(5,1,0,3,2,4),(5,2,0,3,1,4),(5,3,0,2,1,4),(5,4,0,2,1,3),

(5,0,1,3,4,2),(5,1,0,3,4,2),(5,2,0,3,4,1),(5,3,0,2,4,1),(5,4,0,2,3,1),

(5,0,1,4,2,3),(5,1,0,4,2,3),(5,2,0,4,1,3),(5,3,0,4,1,2),(5,4,0,3,1,2),

(5,0,1,4,3,2),(5,1,0,4,3,2),(5,2,0,4,3,1),(5,3,0,4,2,1),(5,4,0,3,2,1),

(5,0,2,1,3,4),(5,1,2,0,3,4),(5,2,1,0,3,4),(5,3,1,0,2,4),(5,4,1,0,2,3),

(5,0,2,1,4,3),(5,1,2,0,4,3),(5,2,1,0,4,3),(5,3,1,0,4,2),(5,4,1,0,3,2),

(5,0,2,3,4,1),(5,1,2,3,0,4),(5,2,1,3,0,4),(5,3,1,2,0,4),(5,4,1,2,0,3),

(5,0,2,3,1,4),(5,1,2,3,4,0),(5,2,1,3,4,0),(5,3,1,2,4,0),(5,4,1,2,3,0),

(5,0,2,4,1,3),(5,1,2,4,0,3),(5,2,1,4,0,3),(5,3,1,4,0,2),(5,4,1,3,0,2),

(5,0,2,4,3,1),(5,1,2,4,3,0),(5,2,1,4,3,0),(5,3,1,4,2,0),(5,4,1,3,2,0),

(5,0,3,1,2,4),(5,1,3,0,2,4),(5,2,3,0,1,4),(5,3,2,0,1,4),(5,4,2,0,1,3),

(5,0,3,1,4,2),(5,1,3,0,4,2),(5,2,3,0,4,1),(5,3,2,0,4,1),(5,4,2,0,3,1),

(5,0,3,2,1,4),(5,1,3,2,0,4),(5,2,3,1,0,4),(5,3,2,1,0,4),(5,4,2,1,0,3),

(5,0,3,2,4,1),(5,1,3,2,4,0),(5,2,3,1,4,0),(5,3,2,1,4,0),(5,4,2,1,3,0),

(5,0,3,4,1,2),(5,1,3,4,0,2),(5,2,3,4,0,1),(5,3,2,4,0,1),(5,4,2,3,0,1),

(5,0,3,4,2,1),(5,1,3,4,2,0),(5,2,3,4,1,0),(5,3,2,4,1,0),(5,4,2,3,1,0),

(5,0,4,1,2,3),(5,1,4,0,2,3),(5,2,4,0,1,3),(5,3,4,0,1,2),(5,4,3,0,1,2),

(5,0,4,1,3,2),(5,1,4,0,3,2),(5,2,4,0,3,1),(5,3,4,0,2,1),(5,4,3,0,2,1),

(5,0,4,2,1,3),(5,1,4,2,0,3),(5,2,4,1,0,3),(5,3,4,1,0,2),(5,4,3,1,0,2),

(5,0,4,2,3,1),(5,1,4,2,3,0),(5,2,4,1,3,0),(5,3,4,1,2,0),(5,4,3,1,2,0),

(5,0,4,3,1,2),(5,1,4,3,0,2),(5,2,4,3,0,1),(5,3,4,2,0,1),(5,4,3,2,0,1),

(5,0,4,3,2,1),(5,1,4,3,2,0),(5,2,4,3,1,0),(5,3,4,2,1,0),(5,4,3,2,1,0));

TYPE

bigintarray = array[0..719] of Integer;

VAR

test4,test5,test6 :String; {test cipher texts}

Summer 1994 17

exitflag :Boolean;

yesflag :Boolean;

period :Integer; {period of cipher, if 6 then 0-5}

numsols :Integer; {number of solutions for each period}

corr_flag :Boolean; {is cipher correlated yet?}

selnum :Integer; {menu selection}

intext :txtarr;

clast :Integer; {last element of cipher arrays}

ciphblk :array[0..7,0..5,0..5] of Char; {8 blocks, max. 6x6}

lastblk :Integer; {last cipher block used}

lastcol :Integer; {last column of lastblk used}

solarray :array[0..719,0..48] of Char; {all possible solutions}

sollast :Integer; {last element of solution arrays}

table :array[’A’..’Z’,’A’..’Z’] of Byte;

score :bigintarray; {correlation scores of sol’s}

location :bigintarray; {location of each score}

function factorial(p:Integer):Integer;

var x,y :integer;

begin

y:=p;for x:=(p-1) downto 2 do y:=y*x; factorial:=y;end;

procedure swagcipherin;

var

Instr :String; b,clth :Integer;

begin

ClrScr;Textcolor(LightGreen);

Writeln(’Enter Swagman Cipher, line by line’);

Writeln(’288 characters max.’);

Writeln(’Ctrl-x to restart, back to correct’);

Writeln(’"test4" for test cipher in period 4’);

Writeln(’"test5" for test cipher in period 5’);

Writeln(’"test6" for test cipher in period 6’);

Writeln(’"/" to end entry’);

Textcolor(White);

b:=1;instr:=’’;clth:=0;

repeat

if b>Length(instr) then begin

b:=1;Readln(instr);

if instr=’test4’ then instr:=test4;

if instr=’test5’ then instr:=test5;

if instr=’test6’ then instr:=test6;

end;

if instr[b]<>’/’ then begin

intext[clth]:=Upcase(instr[b]);

Inc(clth);Inc(b); end;

until (clth>287) or (instr[b]=’/’);

clast:=clth-1;

end;

procedure periodcheck;

var check :array[4..6] of String[5];

x,z :Integer;

begin

for x:=4 to 6 do begin

z:=clast+1;

18 Computer Supplement 19

if ((z mod x)<>0) or ((z div (x*x))>8)

then check[x]:=’FALSE’ else check[x]:=’TRUE’;

end;

ClrScr; TextColor(Black);GotoXY(1,5);

Writeln(’Cipher Length is ’,z,’ Letters’,^J^J);Textcolor(White);

for x:=4 to 6 do

Writeln(’Period ’,x,’ is ’,check[x],^J);

any_key;

end;

procedure solbubblesort;

{sorts solution digraph scores in descending order}

var x :Integer;

flag :Boolean;

begin

repeat

flag:=true;

for x:=0 to (numsols-1) do

if score[x]<score[x+1] then begin

intswap(score[x],score[x+1]);

intswap(location[x],location[x+1]);

flag:=false;

end;

until flag=true;

end;

procedure digraph_check;

var

r,x :Integer;

begin

for x:=0 to numsols do begin

score[x]:=0;location[x]:=0;end; {clear score & location arrays}

for x:= 0 to numsols do begin

location[x]:=x;

for r:= 0 to sollast-1 do

score[x]:=score[x]+table[solarray[x,r],solarray[x,r+1]];

end;

end;

procedure initialize;

var n,square :Integer;

begin

numsols:=factorial(period+1)-1; {index of possible solutions, 0-numsols}

sollast:=((clast+1) div (period+1))-1; {index of last solution, 0-sollast}

square:=(period+1)*(period+1); {number of squares in each block}

lastblk:=((clast+1) div square); {index of last cipher block}

n:=(clast+1) mod square; {if last block complete, n=0}

if n=0 then begin Dec(lastblk); lastcol:=period; end

else lastcol:=(n div (period+1))-1;

end;

procedure fill_blocks;

var cl,v,x,y,z :Integer;

begin

cl:=0;

FillChar(ciphblk,Sizeof(ciphblk),#32); {clear ciphblk to blanks}

for x:=0 to lastblk do begin

Summer 1994 19

if x=lastblk then v:=lastcol else v:=period;

for y:=0 to v do

for z:=0 to period do begin

ciphblk[x,y,z]:=intext[cl];

Inc(cl);

end;

end;

end;

procedure display_blocks; {display cipher blocks}

var c,r,x,y,z :Integer;

begin

ClrScr; Textcolor(Green);

c:=1;r:=4;

for x:=0 to lastblk do begin

for y:=0 to period do

for z:=0 to period do begin

GotoXY(c+y,r+z);Write(ciphblk[x,y,z]);

end;

Inc(c,(period+2)); if c>(4*(period+2)+1) then begin c:=1;r:=12;end;

end;

GotoXY(1,20); Write(’Cipher Length = ’,clast+1);

any_key;

end;

procedure assemble_solutions(numkeys:Integer);

var n,p,s,w,v,x,y,shft :integer;

begin

p:=0;

for n:=0 to numkeys do

for shft:=0 to period do begin {shift each key set}

s:=0;

for x:=0 to lastblk do begin

if x=lastblk then v:=lastcol else v:=period;

for y:=0 to v do begin

w:=(y+shft) mod (period+1); {add in shift factor}

case period of

3: solarray[p,s]:=ciphblk[x,y,allposs4[n,w]];

4: solarray[p,s]:=ciphblk[x,y,allposs5[n,w]];

5: solarray[p,s]:=ciphblk[x,y,allposs6[n,w]];

end; {of case statement}

Inc(s);

end;

end;

Inc(p); {index of solutions array}

end;

end;

procedure load_digraph_table;

var

digfile :file of byte;

rl,cl :char;

begin

Assign(digfile,’digrams.dat’);reset(digfile);

for rl:=’A’ to ’Z’ do

for cl:=’A’ to ’Z’ do

20 Computer Supplement 19

Read(digfile,table[rl,cl]);

Close(digfile);

end;

procedure display_solutions;

label 5;

var c,x,y :Integer;

a :Char;

begin

if sollast>39 then Textmode(CO80);

TextBackground(Black);ClrScr;

for x:=0 to numsols do begin

c:=(x mod (period+1))+9;Textcolor(c);

for y:=0 to sollast do Write(solarray[location[x],y]);

Write(#10#13);

if ((x mod 22)=0) and (x<>0) then begin

message(’Any Key to Continue, Esc for menu’,White,1,24,false);

a:=Readkey;

if a=#27 then goto 5 else ClrScr; {Esc to return to main menu}

end;

end;

any_key;

5: Textmode(CO40);

end;

procedure correlate;

var numkeys :Integer;

begin

numkeys:=factorial(period)-1;

initialize; {set global variables for period chosen}

fill_blocks;

ClrScr;message(’DECIPHERING’,White,11,10,false);

assemble_solutions(numkeys);

message(’CHECKING DIGRAPHS’,White,11,12,false);

digraph_check; {check all solutions for best English digraphs}

message(’SORTING SOLUTIONS’,White,11,14,false);

solbubblesort; {sort solutions in descending order of best digraphic score}

Sound(500);message(’FINISHED’,White,11,16,false);Delay(1500);NoSound;

corr_flag:=true;

end;

procedure hardcopy(n:Integer);

var x,y :Integer;

begin

for x:=0 to n do begin

for y:=0 to sollast do Write(LST,solarray[location[x],y]);

Write(LST,#10#13);

end;

end;

begin {main body of program}

Textmode(CO40); {40 column color}

exitflag:=false; {initialize Boolean flags}

test4:=test41+test42; {period 4 test cipher assembled}

test5:=test51+test52+test53; {period 5 test cipher assembled}

test6:=test61+test62+test63+test64; {period 6 test cipher assembled}

load_digraph_table;

Summer 1994 21

repeat

TextBackground(Brown);ClrScr;Textcolor(Black);GotoXY(8,1);

Writeln(’SWAGMAN 6 CRYPTANALYSIS’^J^J^J^J);

Writeln(’(1) Enter Cipher’^J);

Writeln(’(2) Correlate Solutions for Period 6’^J);

Writeln(’(3) Correlate Solutions for Period 5’^J);

Writeln(’(4) Correlate Solutions for Period 4’^J);

Writeln(’(5) Display Cipher Blocks’^J);

Writeln(’(6) Hardcopy Top 20 Solutions’^J);

Writeln(’(7) Hardcopy All Solutions’^J);

Writeln(’(8) Display All Solutions’^J);

Writeln(’(0) Exit to DOS’^J);

digit_in(sbn,White,10,24,selnum);

case selnum of

1 : begin

swagcipherin;

yes_no(itc,LightGreen,1,24,yesflag);

if yesflag=true then begin

squeeze(ualph,clast,intext);

periodcheck;corr_flag:=false; {not correlated yet}

end;

end;

2 : begin period:=5;correlate;end;

3 : begin period:=4;correlate;end;

4 : begin period:=3;correlate;end;

5 : display_blocks;

6 : if corr_flag=true then hardcopy(19);

7 : if corr_flag=true then hardcopy(numsols);

8 : if corr_flag=true then display_solutions;

0 : begin TextBackground(Black);ClrScr;TextBackground(Blue);

yes_no(qtp,White,7,12,exitflag);

end;

end; {of case statement}

until exitflag=true;

Textmode(CO80);Textcolor(White); {80 column color}

end. {of program }

CIPHLIB.PAS

UNIT CIPHLIB; {Standard Cryptographic routines}

INTERFACE

USES Crt;

const

Maxlen = 600;

upalph = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’;

lowalph = ’abcdefghijklmnopqrstuvwxyz’;

digitstr = ’0123456789’;

itc = ’Is This Correct?’;

sbn = ’Select By Number:’;

qtp = ’Quit This Program?’;

22 Computer Supplement 19

ipr = ’Is Printer Ready?’;

ualph : set of Char = [’A’..’Z’];

lalph : set of Char = [’a’..’z’];

digset: set of Char = [’0’..’9’];

type

txtarr=array[0..Maxlen] of Char;

intarr=array[0..Maxlen] of Integer;

str30=String[30];

str6=String[6];

charset=Set of Char;

function Lowcase(a:Char):Char;

function FileExists(filename :String):Boolean;

procedure cipherin(test:String;Maxlen:Integer;

var clast:Integer;var cipher:txtarr);

procedure yes_no(prompt:Str30;col,x,y:Integer;var a:Boolean);

procedure show_value(name:Str30;col,x,y,v:Integer);

procedure number_in(prompt:Str30;col,x,y,min,max:Integer;

var n:Integer);

procedure digit_in(prompt:Str30;col,x,y:Integer;

var d:Integer);

procedure any_key;

procedure message(info:Str30;col,x,y:Integer;clr:Boolean);

procedure squeeze(mask:charset;var clast:Integer;var cipher:txtarr);

procedure char_to_int(clast:Integer;ctxt:txtarr; var cint:intarr);

procedure ciph_str_in(test:String;var ciphstr:String);

procedure squeeze_str(mask:charset;var str:String);

procedure intswap(var x,y:Integer); {exchanges two integer values}

procedure charswap(var a,b:Char); {exchanges two char values}

procedure bubblesort(n:Integer;var narr1,narr2:intarr);

procedure move_cursor(wid,lx,fr,lr,sp:Integer;var x,y:Integer);

procedure morsecode(f:Char;var mstr:Str6;var pl:Char);

IMPLEMENTATION

procedure cipherin;

var

Instr :String; b,clth :Integer;

begin

ClrScr;Textcolor(LightGreen);GotoXY(1,5);

Writeln(’Enter Cipher, line by line’);

Writeln(MaxLen,’ characters.’);

Writeln(’Ctrl-x to restart, back to correct’);

Writeln(’"test" for test cipher’);

Writeln(’"/" to end entry’);

Textcolor(White);

b:=1;instr:=’’;clth:=0;

repeat

if b>Length(instr) then begin

b:=1;Readln(instr);

if (instr=’test’) or (instr=’TEST’) then instr:=test;

end;

if instr[b]<>’/’ then begin

cipher[clth]:=Upcase(instr[b]);

Inc(clth);Inc(b); end;

until (clth>MaxLen) or (instr[b]=’/’);

Summer 1994 23

clast:=clth-1;

end;

procedure yes_no(prompt:Str30;col,x,y:Integer;var a:Boolean);

var z :Char; p: Integer;

begin

Textcolor(col);

repeat

GotoXY(x,y);ClrEol;Write(prompt,’ (Y/N): ’);

z:=Readkey;p:=Pos(z,’YyNn’);

until p<>0;

if p<3 then a:=true else a:=false;

end;

procedure show_value(name:Str30;col,x,y,v:Integer);

begin

GotoXY(x,y);Textcolor(col);Write(name,v);

end;

procedure number_in(prompt:Str30;col,x,y,min,max:Integer;var n:Integer);

begin

repeat

Textcolor(col);GotoXY(x,y);Write(prompt,’(’,min,’-’,max,’): ’);

Readln(n);

until (n>=min) and (n<=max);

end;

procedure digit_in(prompt:Str30;col,x,y:Integer;var d:Integer);

var r :Integer; s :Char;

begin

repeat

Textcolor(col);GotoXY(x,y);Write(prompt);

s:=Readkey;Val(s,d,r); if r<>0 then Write(#7);

until r=0;

end;

procedure any_key;

var

z :Char;

begin

GotoXY(1,25);Textcolor(White);ClrEol;

Write(’Any Key to Continue’);z:=Readkey;

end;

procedure message(info:Str30;col,x,y:Integer;clr:Boolean);

begin

if clr=true then ClrScr;

GotoXY(x,y);Textcolor(col);Write(info);

if clr=true then any_key;

end;

procedure squeeze(mask:charset;var clast:Integer;var cipher:txtarr);

var

x,y :Integer;

begin

y:=0;

for x:=0 to clast do begin

if cipher[x] in mask then begin

cipher[y]:=cipher[x]; y:=y+1;

end;

24 Computer Supplement 19

end;

clast:=y-1;

end;

procedure char_to_int(clast:Integer;ctxt:txtarr;var cint:intarr);

var x :Integer;

begin

for x:=0 to clast do cint[x]:=Ord(ctxt[x])-65;

end;

procedure ciph_str_in(test:String;var ciphstr:String);

var a,b,c,d :Integer;

instr :array[0..11] of String;

over :Boolean;

begin

ClrScr;Textcolor(Lightgreen);GotoXY(1,5);

Write(’Enter Cipher String’,#13#10,

’255 Chars., 12 lines, max.’,#13#10,

’Ctrl-X to restart, backspace to correct’,#13#10,

’"test" for test cipher’,#13#10,’"/" to end entry’#13#10#10);

Textcolor(Blue);ciphstr:=’’;a:=0;over:=false;

repeat

Readln(instr[a]);if instr[a]=’test’ then instr[a]:=test;

b:=Length(instr[a]);

if instr[a,b]<>’/’ then a:=a+1 else over:=true;

until over=true;

for c:=0 to a do ciphstr:=ciphstr+instr[c];

Delete(ciphstr,Length(ciphstr),1); {remove /}

end;

procedure squeeze_str(mask:charset;var str:String);

var x :Integer;

begin

x:=1;

while x<= Length(str) do

if (str[x] in mask) then x:=x+1 else Delete(str,x,1);

end;

function Lowcase(a:Char):Char;

const ualph:Set of Char = [’A’..’Z’];

begin

if a in ualph then a:=Chr(Ord(a)+32);

Lowcase:=a;

end;

function FileExists; {Boolean function that returns True if the file exists;

otherwise, it returns false; Closes file if it exists}

var f :file;

begin {$I-}

Assign(f, Filename); Reset(f); Close(f); {$I+}

FileExists:= (IOResult=0) and (filename<>’’);

end;

procedure intswap(var x,y:Integer);

var t :integer;

begin t:=x;x:=y;y:=t; end;

procedure charswap(var a,b:Char);

var t :Char;

begin t:=a;a:=b;b:=t; end;

Summer 1994 25

procedure bubblesort(n:Integer;var narr1,narr2:intarr);

{sorts two integer arrays in descending order of the first}

{n is number of elements in each array}

var x :Integer;

flag :Boolean;

begin

repeat

flag:=true;

for x:=0 to (n-1) do

if narr1[x]<narr1[x+1] then begin

intswap(narr1[x],narr1[x+1]);intswap(narr2[x],narr2[x+1]);

flag:=false;

end;

until flag=true;

end;

procedure move_cursor(wid,lx,fr,lr,sp:Integer; var x,y:Integer);

var a :Char;

begin

a:=Readkey;

case a of

#75: begin {left arrow}

Dec(x);if x<1 then begin x:=wid;Dec(y,sp);end;

if y<fr then y:=lr;

if (y=lr) and (x>lx) then x:=lx;

end;

#77: begin {right arrow}

Inc(x); if x>wid then begin x:=1;Inc(y,sp);end;

if (y=lr) and (x>lx) then x:=lx;

if y>lr then y:=fr;

end;

#72: begin {up arrow}

Dec(y,sp); if y<fr then y:=lr;

if (y=lr) and (x>lx) then x:=lx;

end;

#80: begin {down arrow}

Inc(y,sp); if (y=lr) and (x<lx) then x:=lx;

if y>lr then y:=fr;

end;

end; {of case statement}

GotoXY(x,y);

end;

procedure morsecode(f:Char;var mstr:str6; var pl:Char);

const

N = 43; {number of Morse characters in arrays}

plain :array[0..N] of Char = ’etaonirshldcupfmwybgvkqxjz0123456789.,?:;-/=’;

morse :array[0..N] of str6 = (’.’,’-’,’.-’,’---’,’-.’,’..’,’.-.’,’...’,

’....’,’.-..’,’-..’,’-.-.’,’..-’,’.--.’,’..-.’,’--’,’.--’,’-.--’,

’-...’,’--.’,’...-’,’-.-’,’--.-’,’-..-’,’.---’,’--..’,’-----’,’.----’,

’..---’,’...--’,’....-’,’.....’,’-....’,’--...’,’---..’,’----.’,

’.-.-.-’,’--..--’,’.-.-.-’,’---...’,’-.-.-.’,’-....-’,’-..-.’,

’-...-’);

var x :Byte;

begin

26 Computer Supplement 19

if f=’d’ then begin

x:=0;

while x<=N do begin

if mstr=morse[x] then begin pl:=plain[x];exit;end;

Inc(x);

end;

end;

if f=’e’ then begin

x:=0;

while x<=N do begin

if pl=plain[x] then begin mstr:=morse[x]; exit;end;

Inc(x);

end;

end;

end;

END.

INTERNET MAILING LIST FOR ACA

Three dedicated ACA members have estab-
lished the American Cryptogram Association
Mailing List for those of the Krewe with In-
ternet access. The mailing list is intended to
keep ACA members in touch over the Internet
computer network, with a major emphasis on
solving cryptograms. The ACA is devoted to
helping its members improve their knowledge
of cryptography, and to make available mate-
rials and publications to assist in the study of
cryptography.

DABASAP (Greg Griffin, vlad@holonet.net)
will serve as the primary editor and will be
responsible for screening messages from non-
subscribers and for promoting appropriate dis-
cussion on the list.

PRIME (DanWheeler, dan.wheeler@uc.edu)
will serve as the primary owner and will be
responsible for maintenance of the mailing list
and the handling of error messages.

NORTH DECODER (Jerry Metzger,
metzger@rs1.cc.und.nodak.edu) will serve

as Chair of the ACA-L Committee and will
be responsible for co-ordination with the ACA
Executive Board and with North Dakota State
University.

NORTH DECODER also maintains an anony-
mous ftp and gopher site on a computer at
the University. On a system with an ftp

client, typing
ftp rs1.cc.und.nodak.edu

will connect you. Enter anonymous as the user
name, and your Internet address as the pass-
word. Enter cd pub/aca to reach the appro-
priate files.

On a system with a gopher client, typing
gopher gopher.cc.und.nodak.edu

will give a menu, one option of which will be
American Cryptogram Association, where a
few infomative text files have been placed.

The same text files are available from an
anonymous ftp site at plains.nodak.edu in
the directory pub/aca/info.

Summer 1994 27

FOUR MINI-REVIEWS
DAEDALUS

Seizing The Enigma; David Kahn;
Houghton Mifflin; 1991. $24.95

This is, of course, not a new book, but I was
prompted to review it when I found it remain-
dered by a number of mail-order bookstores
and also on the ‘reduced’ table of my local
Barnes and Noble at the ridiculously low price
— for a hard cover title of this calibre — of
nine dollars and change.

Heros and villains, backroom scientists in a
stately home in England, adventure on the
high seas, espionage (and even a love inter-
est) are more normally found in novels — but
this tale is the real thing! The Poles, French,
British (and a little later the Americans) com-
bined resources to crack the German Enigma
machine. The effects of their successes on the
critical Battle of the Atlantic are presented
and evaluated. This volume is a real “can’t
put it down” attention holder as well as be-
ing an invaluable addition to the library of
anyone interested in the Enigma machine and
Ultra, the cryptanalysts’ output. Impeccably
written by master historian of the cipher and
ACA member David Kahn and well illustrated
(including several detailed photographs of an
Enigma machine), this volume should be on
your bookshelf at any price!

Applied Cryptography: Protocols, Al-
gorithms, and Source Code in C; Bruce
Schneier; John Wiley and Sons; 1993. $44.95

This work will act as both an introduction
to modern cryptography for programmers and
a programming reference for cryptographers
whose interests lie in the security of data
transmitted between, and stored in, comput-
ers. Data encryptation protocols and algo-
rithms are presented in detail. The use (and
abuse) of encryptation, digital signatures etc.
are described by example as we follow Alice
and Bob (and Mallet, Trent, and others) as
they explore and exploit cryptology in its most

advanced forms. Part Five of this book is an
appendix containing the source code, in C, for
much of the material presented earlier. For
those who want a smoother path, a diskette
containing all of the code included in the book
- and more - is available from the author for
$30. An invaluable reference that is eminently
readable!

The Complete Modem Reference, 2nd
Ed.; Gilbert Held; John Wiley and Sons;
1994. $34.95

This book may be read as a thorough in-
troduction to the mysteries of data transmis-
sion/reception and online communications, or
it may serve as an exhaustive reference to both
the theoretical and practical aspects of modem
use. Chapters on modulation standards and
methods sit alongside the practical details of
installing a modem in both the PC/XT/AT
and PS2 series of IBM machines. The au-
thor has updated the earlier (1991) version of
his work by including material dealing with
v.32bis (14,400 bps) modems and associated
error-correction and data-compression proto-
cols and standards. A chapter on fax modems
has been added. Some reference to the upcom-
ing standards for 28,800 bps modems is made
but the book falls short of “hard” information
in this latest, still-developing area.

PGPSHELL v3.2; James Still; Shareware -
usual BBS and ftp sources.

This is the latest version of the well-known
front end for PGP, fully compatible with PGP
v2.6 and all previous versions. Refinements
over v3.1 include the ability to configure for
the use of an editor other than the one built
into the program and also to establish a subdi-
rectory to store plaintext and ciphertext mes-
sage files. For those who use PGP and find the
command line inputs impossible to remember
without a crib, this is what you need!

28 Computer Supplement 19

GW-BASIC.C CRACKING
Paul C. Kocher

/* BASCRACK.C

GW-BASIC for MS-DOS appears to encrypt a program using a substitution cipher

with period 143. There is an 11-byte key and a 13-byte key that are used to

"protect" the program. Running this program will attempt to crack that protection.

*/

#include <stdio.h>

int main(int argc, char **argv) {

unsigned char key1[13]={

0xA9,0x84,0x8D,0xCD,0x75,0x83,0x43,0x63,0x24,0x83,0x19,0xF7,0x9A};

unsigned char key2[11]={

0x1E,0x1D,0xC4,0x77,0x26,0x97,0xE0,0x74,0x59,0x88,0x7C};

int nextbyte, index;

unsigned char c;

FILE *infile, *outfile;

if (argc != 3) {

printf("Utility to decrypt GWBASIC/BASICA files saved with \",p\"\n\n"

"Copyright 1992 by Paul C. Kocher. All rights reserved.\n\n"

"Usage: BASCRACK encrypted.bas outfile.bas\n");

exit(1);

}

if ((infile=fopen(argv[1],"rb"))==NULL || (outfile=fopen(argv[2],"wb"))==NULL) {

printf("Error opening file.\n");

exit(1);

}

if (fgetc(infile) == 0xFE) { fputc(0xFF, outfile); }

else { printf("Not an encrypted BASIC file\n");

exit(1);

}

index = 0;

nextbyte=fgetc(infile);

while (c=nextbyte, (nextbyte=fgetc(infile)) != EOF) {

c -= 11 - (index % 11);

c ^= key1[index % 13];

c ^= key2[index % 11];

c += 13 - (index % 13);

fputc(c, outfile);

index = (index+1) % (13*11);

}

fputc(c, outfile); /* Don’t decrypt the EOF character */

return 0;

}

Summer 1994 29

HIGH PRECISION BASIC

Although BASIC is the language of choice
for most Krewe programmers, the popular
dialects lack sophisticated number-handling
ability. A remedy for this deficit may be found
in UBASIC, a BASIC language interpreter writ-
ten by Professor Yuji Kida of the Department
of Mathematics at Rikkyo University, Japan.
UBASIC is uniquely powerful in a number of
ways:
More than 230 keywords and commands.

Support for a wide range of integers from
−65536542 to 65536542 which is a number in
a little more than 2600 figures in decimal ex-
pression.

Support for rational and real numbers.

Support for complex numbers, up to 1300 dig-
its in decimal notation, and including com-
plex number versions of the following func-
tions: EXP, LOG, SIN, COS, TAN, ATAN, SINH,
COSH, SQRT, BESSELI, BESSELJ.

Includes the following operators: Logical Or,
Logical And, Comparisons, Addition, Sub-
traction, Multiplication, Division, Integer Di-
vision, Rational Division, Remainder, Power.

Provides the ability to use “local” variables
within subroutines.

Allows polynomials in one variable, includ-
ing the following calculations: Addition, Sub-
traction, Multiplication, Division, Remainder,
Power, Differential, Value.

Machine language programs can be put in pre-
declared arrays of Short variables and called
by array names.

PRINT statements may be configured to auto-
matically direct output to the screen, printer,
and/or a file.

Allows a program to be stopped and continued
at a later time. In ordinary BASIC, when you
want to do another job while running a pro-
gram which takes a lot of time, you have no
choice but to abort the running program or to

give up the new job. There is no satisfactory
solution as DOS does not currently support
multi-tasking. However, to FREEZE the run-
ning program is an effective solution.

1. Stop the running program by
ctrl+BREAK or ctrl+c.

2. FREEZE the current status of memory
on to a disk.

3. Start and finish another job.

4. MELT the frozen memory.

5. Continue the program by CONT.

The ability to compute a string if it represents
a mathematical formula.

UBASIC includes may example programs, in-
cluding:

PRTEST1 is an implementation of Lenstra’s
version of the Adleman-Pomerance-Rumely
primality test algorithm. It is faster than
simple-minded ones for integers of more than
12 to 13 figures. A 70-figure number can be
tested in an hour. A present implementation
can handle integers of up to 137 figures.

ECM, ECMX — factors integers using the El-
liptic Curve Method. In a reasonable time,
it can handle integers of more than 200 fig-
ures, but with a factor of at most 20 figures.
ECMX, which uses a machine language routine,
is faster by a few per cent.

MPQSX uses the Multiple Polynomial Quadratic
Sieve method to factor integers of up to about
45 figures. If you have 32-bit machines (CPU
is 386 or 486) with more than 1 megabyte ex-
tended memory and 10 to 100 megabytes of
free hard disk space, MPQSHD will decompose
up to 80 digits (however, it will take more than
1000 hours).

Version 8.65 is available in the
/public/ubasic directory on Decode, the
ACA BBS.

30 Computer Supplement 19

WHAT THE OTHER GUY IS DOING

[Editor’s Note: Based on the feedback I get,
WOGID is one of the most popular features of
the The Computer Supplement . I’ve included
some of the initial messages from the (elec-
tronic) ACA Mailing List, in the hope these
longer messages will trigger some thought-
ful responses and provide additional feed-
back. Be sure to read Larry Loen’s excellent
observations about computer languages, and
GAMESTER’s request for your opinions.]

DABASAP (Greg Griffin) continues to
collect electronic mail addresses for ACA
members. If you have an Internet, Com-
puserve or other electronic mail address, con-
tact him at vlad@holonet.net. He is also in-
strumental in the set-up and operation of an
ACA electronic mailing list. He is using his
MacPlus to help solve aristos, patristos and
railfence ciphers. He programs in Pascal and
APL, and has just completed a C language
class, so he’ll get up to speed and start coding
in C!

George Foot (georgefoot@oxted.demon.co.uk)
writes:

[The] Internet can be valuable in facilitating
correspondence between members both in the
case of an exchange of views between two
members or as a means of distributing infor-
mation to all the members who can receive
Internet postings.

An interest amongst ACA members in crypto-
graphic methods of the type which computers
have made possible is to be encouraged and
Internet can assist in the study of such meth-
ods amongst ACA members by bringing them
into touch with the large fraternity of other In-
ternet subscribers who regularly discuss these
topics in Internet newsgroups – which include
newsgroups created specifically for discussions
of cryptography.

NORTH DECODER (Jerry Met-
zger) is reachable via e-mail at
metzger@rs1.cc.und.nodak.edu. He writes:

I’ve always enjoyed puzzles and games. . . crosswords

(particularly cryptic crosswords), chess, go
(both of which have remained enigmas to me),
and of course, ciphers of all types. I program
a bit in a variety of languages, but mostly I
prefer pencil and paper solutions to crypts.

Besides being one of the owners of [the ACA
mailing list] (with DABASAP and PRIME),
my other contribution to the ACA is operat-
ing the aca drop box (that stands for the “as-
sorted cryptographic articles drop box”) on an
[IBM UNIX] AIX system here at UND. This is
an area where krewe members can both drop
off and retrieve items dealing with the sorts of
crypts found in The Cryptogram. If you would
like details on how to login in to the aca drop
box, drop me an e-mail message and i’ll send
you the login id and the password. (This is not
an anonymous site; i’m trying to maintain a
little control over access to minimize possible
export violations of cryptographic item.)

I recently looked at PGP, found it interesting,
and would like to pratice using it a bit. I’m
sure that what appears straight forward when
read is not so direct when actually put into
practice. If anyone would like my public key,
please drop me a note.

CORUM (John Zaharychuk) writes:

What I would like to do is ‘play’ with PGP.
That means knowing a group of people with
similar interests who don’t mind the extra
steps involved with using encryption and test-
ing out whether this is a real world option.
It also gives me an opportunity to gener-
ate/receive encrypted traffic at random.

For example, I am currently typing this on a
Mac using MS Word. I’ll then use MacPGP to
generate my public key and to sign this mes-
sage. I then need to paste the file into my mail
program to send it out. Not the most conve-
nient steps I would say but all I know right
now. I am also not sure how easy it is to send
out encrypted bulletins or newsletters.

In response to some of the other comments,
PGP is available for the Mac and the keyrings

Summer 1994 31

are fully portable to at least the DOS and
OS/2 environments.

Larry Loen (SHMOO, lwloen@vnet.IBM.COM)
writes:

I have long been interested in computer cryp-
tography – I began a lot of the ACA’s work
in this area with my participation in conve-
tions back around ’78. Use of computers was
kind of “in the closet” up ’til then. Eventually,
a lot more active members than I came out
with things like the Computer Column and the
Supplement, but I did a little bit by lobbying
for both and participating in convention bull
sessions that helped give birth to both (though
the late MIKE BARLOW deserves, by far, the
bulk of the credit for at least the latter).

I have contributed a decent handful of articles
to both the Cryptogram and the Supplement
over the years.

I don’t do much amateur crypto these days,
but I keep my membership up and still partic-
ipate now and then. When my life slows down,
I hope to again take it up in earnest.

I know from earlier work that ACA members
are hopelessly diverse when it comes to their
computers.

If it was manufactured, somebody has it. It is
now probably less diverse than it used to be,
but there would probably be a pretty represen-
tative split between the IBM/Clone crowd and
Macs. Plus an amazing amalgam of die-hards
owning C-64s, old Apples, and maybe even a
TRS-80 or CP/M machine or two, though this
is probably fading fast.

Language-wise, we are doubtless hoplessly di-
verse, also, but I think Pascal and ordinary
Basic has so far dominated at least what is
published.

As far as Windows goes, I think that’s an elab-
oration we can probably do without. What
most people are interested in is various kinds
of aids to solving and a simple command-line
interface is adequate. Even if you “must” have
Windows, I could imagine Borland’s EasyWin
(where ordinary “command line” stuff is emu-

lated in a spectacularly simple Window) would
be fine for many purposes.

There may be a pathway, however, to have
your cake and eat it too, if we go to an object-
oriented, collaberative design.

For instance, I have worked out the beginnings
of an object-oriented hierarchy that would en-
able almost any ACA system to be added to a
common base. With this object-oriented base,
it might be possible to separate the display
portion from the cryptography portion with-
out too much performance loss and without
adding complexity (in fact, it might simplify
things).

With this schema, it might be enough to have
a standardWindow shell that could adaptively
deal with any system, adding systems over
time. Any combination of manual and au-
tomatic solving methods could be potentially
combined.

The downside is that some minimal C++
would be required to pull it off, but even that
might be minimized. I personally think C++
will fairly rapidly displace C in any event; cer-
tainly, its advantages matter to us. The main
issue is how fast ACAers will take up the lan-
guage.

The upside is, that we can separate the ef-
forts nicely. For example, not only would
it be possible to have a command line/DOS
text screen/Windows/Mac version all sepa-
rated from the main-line code that creates and
solves, say, Bifids, but it would also be possi-
ble for us to bundle up the printing support in
such a way that simply adding a cipher to the
base, with only a very, very, small amount of
added work, could be used to prepare “cons”,
complete with two page output (one with just
the crypt, one with the solution shown) as the
section editors prefer.

Best of all, instead of everyone having to write
everything, if the design were understood, we
could divide and conquer the effort of writing
systems. Once I wrote a system and added it,
everyone would have my work for the price of
a recompile.

32 Computer Supplement 19

That’s the theory, anyway.

GAMESTER (Jim Glore) writes:

I have been an ACA member for about 5 years
and have enjoyed tackling all areas of the CM.
While my degree work was in Chemistry, I
have been more involved with computers for
the past 15 years, which has exposed me to
Fortran, BASIC, assembly languages and now
C. Along the way I hav had to cope with var-
ious operating systems such as VMS, UNIX,
DOS and several extinct dinosaurs.

My computing interest intersected with cryp-
togram solving when I was running on an Ap-
ple II (minus), and I wrote several programs
to aid in solving, some of which are for sys-
tems which are not currently represented in
articles in the computer corner or the supple-
ment (such as gromark). I will be translating
the Applesoft programs to run on a PC and
would be interested in some feedback from you
all before I choose my path.

One choice would be to adapt the programs
to run under Windows, using Virtual Basic
or Virtual C. How many users are windows
lovers/haters? A second choice would be to
target DOS users and adapt into BASIC or C.
There are pro’s and con’s for either OS choice
as well as either language:

Programs for Windows are generally easier to
write and can usually contain functions to pop
up windows, for example to see the working
version of the keyword solution. However,
these are restricted to Windows users and the
source code is not very portable to other en-
vironments.

DOS programs lack the sex appeal of pop up
features and take a bit more effort, but the
code can be provided easily and modified by

the user to suit his/her tastes more easily. In
fact, that is where I got some of my ideas
and/or functions.

The question of BASIC vs C probably only
makes sense if I decide to ignore Windows. Mi-
crosoft BASIC is fairly universal and easy to
convert into other versions of BASIC. (Lord
knows, if I could duplicate the listings from
the Supplement in Applesoft BASIC, it could
probably be done for any other dialect.) C,
on the other hand, is not restricted to the PC
environment and probably could be lifted di-
rectly into a UNIX machine with only minor
problems.

So there you have it... the pro’s and con’s.
Any feedback from the krewe would be most
welcome. And the results of my work will
eventually find their way into Dan V’s BBS
as well as the ACA drop box (provided North
Decoder and I can figure out how to do that),
and just as soon as I can find one of those
elusive disks, the ’round tuit’.

DAEDALUS (David Hamer) has returned
to the US after a four-year sojourn in Paris. To
celebrate this event he bought a new machine,
486DX2/66-based, to assist in his cryptologi-
cal efforts. His interest in both classical and
modern cryptology, with current emphasis on
Enigma, continues.
He also asks:
I need help from anyone who has worked
through, or is still working on, C. Deavours
book, Breakthrough ’32 - The Polish Solution
of the Enigma; Aegean Park Press (#51). I’ve
had the book, and accompanying software for
some time, but you know how it is ! Having
worked the first three exercises (p.5) without
difficulty and arrived at p.12-13, I am asked
to run ENIGMA.BAS:

>...answering Y to the prompt "FAST ROTOR STEPS ONLY (Y OR NO)?"<

which I am unable to do because this prompt
does not appear, nor is this line included
in the BASIC code! Has anyone else had
this problem; does anyone have a version of

ENIGMA.BAS which includes this line ? (the
opening screen of my version of the program
is appended).

Summer 1994 33

GERMAN ARMY ENIGMA (CIRCA 1932)

ROTOR WIRINGS:

1 : EKMFLGDQVZNTOWYHXUSPAIBRCJ

2 : AJDKSIRUXBLHWTMCQGZNPYFVOE

3 : BDFHJLCPRTXVZNYEIWGAKMUSQO

REVERSING ROTOR: (AY) (BR) (CU) (DH) (EQ) (FS) (GL)

(IP) (JX) (KN) (MO) (TZ) (VW)

ENTER PATCH PANEL CONNECTIONS, CR TO TERMINATE (E.G. AU)

?

KARL (Waldo Boyd) responds to G4EGG’s
query from CS #18. QUE books program-
ming series have a few available on Quick-
BASIC. Using QuickBASIC 4 by Feldman
and Rugg covers 4.5 quite well from a begin-
ner’s standpoint, and goes into advanced use
around page 500. There’s also Programmer’s
Toolkit with a disk by the same authors, and

Advanced Techniques by Aiken. I devoured all
three, and have occasionally found an article
in Dr. Dobb’s Journal, and other computer
magazines on the newsstand. All three are
superior, in my opinion, to the two that come
with the PC version of Microsoft QuickBASIC
4.5.

NOTES FROM THE KEYBOARD

The September 1994 issue of Communications
of the ACM, pp. 102–108 contains an article
on solving cryptograms via what is basically
a dictionary pattern search method. The au-
thor goes in to great detail about the theory
behind the method, and offers 13 references to
back it up. The C program, documentation,
and data files are available on the ACA BBS.

A new version of Pretty Good Privacy (PGP)
is available from various sources, including the
ACA BBS. The new version is the result of col-
laboration between MIT and the RSA patent
holders in an attempt to resolve some of the

licensing issues. Reviews are mixed, as there
are some that believe the new code has been
crippled or compromised in some way. Stay
tuned for details, as new versions seem to come
about every couple of months, with interme-
diate “fixes” and “patches.” I’m still using
version 2.3a.

As noted in the What the Other Guy is Do-
ing section, there are several members of the
Krewe who would like to “practice” with PGP.
Join the Internet mailing list or leave mail on
the ACA BBS if you’re interested in partici-
pating!

34 Computer Supplement 19

SECURING YOUR MS-DOS HARD DRIVE DATA

The ACA BBS now has two programs that al-
low a user to automatically encrypt some or
all of the information on a PC hard drive. For
those of you who are looking for a secure and
relatively painless way to protect your data,
these are two programs you might consider.
The following are exerpts from the documen-
tation.

Secure File System (SFS110.ZIP)

Ever since Julius Caesar used the cipher which
now bears his name to try to hide his military
dispatches from prying eyes, people have been
working on various means to keep their con-
fidential information private. Over the years,
the art of cryptography has progressed from
simple pencil-and-paper systems to more so-
phisticated schemes involving complex elec-
tromechanical devices and eventually comput-
ers. The means of breaking these schemes has
progressed on a similar level. Today, with the
ever-increasing amount of information stored
on computers, good cryptography is needed
more than ever before.

There are two main areas in which privacy pro-
tection of data is required:
- Protection of bulk data stored on disk or
tape.
- Protection of messages sent to others.
SFS is intended to solve the problem of pro-
tecting bulk data stored on disk. The protec-
tion of electronic messages is best solved by
software packages such as PGP (available on
sites the world over) or various implementa-
tions of PEM (currently available mainly in
the US, although non-US versions are begin-
ning to appear).

SFS has the following features:

• The current implementation runs as a
standard DOS device driver, and there-
fore works with both plain MSDOS or
DRDOS as well as other software such as
Windows, QEMM, Share, disk cacheing
software, Stacker, JAM, and so on.

• Up to five encrypted volumes can be ac-
cessed at any one time, chosen from a
selection of as many volumes as there is
storage for.

• Volumes can be quickly unmounted with
a user-defined hotkey, or automatically
unmounted after a certain amount of
time. They can also be converted back
to unencrypted volumes or have their
contents destroyed if required.

• The encryption algorithms used have
been selected to be free from any patent
restrictions, and the software itself is not
covered by US export restrictions as it
was developed entirely outside the US
(although once a copy is sent into the
US it can’t be re-exported).

• SFS complies with a number of national
and international data encryption stan-
dards, among them ANSI X3.106, ANSI
X9.30 Part 2, Federal Information Pro-
cessing Standard (FIPS) 180, Australian
Standard 2805.5.2, ISO 10116:1991 and
ISO 10126-2:1991, and is on nodding
terms with several other relevant stan-
dards.

• The documentation includes fairly in-
depth analyses of various security as-
pects of the software, as well as complete
design and programming details neces-
sary to both create SFS-compatible soft-
ware and to verify the algorithms used in
SFS.

• The encryption system provides reason-
able performance. One tester has re-
ported a throughput of 250 K/s for
the basic version of SFS, and 260 K/s
for the 486+ version on his 486 sys-
tem, when copying a file with the DOS
copy command from one location on an
SFS volume to another. Throughput

Summer 1994 35

on a vanilla 386 system was reported at
around 160 K/s.

Secure Drive (SECDRV13E.ZIP)

Many people have sensitive or confidential
data on their personal computers. Controlling
access to this data can be a problem. PC’s,
and laptops in particular, are highly vulner-
able to theft or unauthorized use. Encryp-
tion is the most secure means of protection,
but is often cumbersome to use. The user
must decrypt a file, work with it, encrypt it,
and then wipe the plaintext. If encryption
were easy, many more people would use it.
SecureDrive is a step in this direction. Se-
cureDrive automatically stores sensitive data
on your DOS/Windows system in encrypted
form.
SecureDrive V1.3 allows you to create up
to four encrypted partitions on your hard

drive(s). It also allows you to encrypt floppy
disks. Encrypted partitions and disks become
fully accessible when the TSR is loaded and
the proper passphrase entered. The TSR takes
only 2.7K of RAM, and can be loaded high.
Encryption is performed at the sector level
and is completely transparent to the applica-
tion program. Everything on the disk or parti-
tions except the boot sector is encrypted. En-
crypted floppy disks can be freely interchanged
with unencrypted ones. Disks and partitions
can be decrypted and returned to normal at
any time.

SecureDrive uses the IDEA cipher in CFB
mode for maximum data security. The MD5
hash function is used to convert the user’s
passphrase into a 128-bit IDEA key. The disk
serial number, and track and sector numbers
are used as part of the initialization to make
each sector unique.

NOTES TO AUTHORS

The Computer Supplement is intended as a fo-
rum to publish articles on the cryptographic
applications of computers. We are always
looking for submissions, but we ask potential
authors to bear in mind:

1. Many readers are new to ciphers; please
include a brief description of the cipher
in question.

2. Many readers are new to computers; ex-
plain why you are using a computer as
well as how.

3. Include the output of a typical run. If
possible, build in an example for the
reader to check the operation. Indicate
how long it took to obtain this result.

4. Include a full description of how the pro-
gram works, and back it up with com-
ments in the listing.

5. Include a table of variables, either sepa-
rately or as a part of the listing.

6. If at all possible, please submit every-
thing in electronic form, either on a disk
(any IBM format) or uploaded to the
ACA BBS. This makes it much easier
for us to typeset.

7. Send material for publication to Dan
Veeneman, PO Box 2442, Columbia,
Maryland, 21045–2442, USA.

36 Computer Supplement 19

ACA COMPUTER BULLETIN BOARD UPDATE

The ACA bulletin board system, Decode,
and is available for both electronic mail
(dan@decode.com) and file transfer, 24 hours

a day at +1 410 730 6734. The following is a
sample of some of the new cryptographic files
added recently:

\public\aca

ultra.zip 16725 21-May-94 Info on Enigma after WW II

wart_c.zip 4786 01-Aug-94 Three analysis utilities (in C) from WART

\public\crypto

cryptbas.zip 16113 27-Jan-94 Basic cryptographic support programs (in C)

doub-des.txt 10323 15-Mar-94 Paper on Double DES encryption

factor.txt 15957 13-May-94 Dr. Ron Rivest on factoring

factor-r.c 10030 03-Mar-94 C program to factor RSA

gifford.cry 1552 29-Mar-94 Pointer to cracking Gifford cryptosystem

knuthrng.zip 4453 06-Mar-94 Code for some of Knuth’s RNG algorithms

modrotor.zip 39870 02-Sep-93 Four rotor, 94 element C code

otp-10.zip 83559 24-May-94 One Time Pad

primes.txt 2944 17-Oct-89 Article about selecting primes for RSA

pwdcrypt.zip 9410 18-Apr-92 Discussion and code for DES encryption

random.zip 120522 03-Mar-94 Various pseudo-random number generators

randtest.c 2800 25-May-94 Test randomness of bit strings

rsafaq.zip 51202 13-Feb-94 FAQ on RSA Encryption, in TeX format

snefru.zip 215217 16-Feb-94 SNEFRU One-way hash encryption

vigenere.zip 54014 16-Feb-94 Vigenere system from Applied Cryptography

zipcrkpw.zip 20109 18-Mar-94 Utility to crack PKZIP encryption

\public\utility

idea.zip 32301 31-Mar-94 C implementation of the IDEA cryptosystem

idea22a.zip 14592 11-Aug-94 IDEA v2.2a for DOS

ideafast.txt 10398 11-Jan-94 Comment and code for faster IDEA on 80x86

\public\pgp

pgp26i.zip 259899 24-May-94 Executables for PGP v2.6 (Use at own risk)

pgp26src.zip 612090 23-May-94 Source code for MIT’s PGP version 2.6

pgpshe32.zip 111948 07-Jul-94 Menu-driven front end for PGP

pwf20.zip 62766 15-Feb-94 PGP WinFront, Windows front end for PGP

\public\ubasic

malm.zip 37752 03-May-94 Numerical analysis programs for UBASIC

ubas865.zip 451290 03-May-94 UBASIC version 8.65

ubasic.rme 1250 03-May-94 Readme for UBASIC

ubmpqs32.zip 58629 03-May-94 Prime factorization for 32 bit UBASIC

