
THE CRYPTOGRAM Autumn 1995

COMPUTER

SUPPLEMENT #20

In this issue:

BUILDING A WORD LIST USING dBASE — PARROT gives directions for generating a
dictionary, including pattern searching.

A TYRO’S COMPUTER SOLUTION — Conrad Phillippi relates his experience in solving
a totally unknown cipher.

CLASSICAL CRYPTOGRAPHY COURSE — LANAKI is offering an “electronic cryptog-
raphy course” via electronic mail.

NURSERY RHYME VIGENÈRE — William Corcoran presents a BASIC program to enci-
pher and decipher messages.

DIGITAL SIGNATURES — FIRE-O gives an introduction to digital signatures, and uses
an easy-to-follow example.

ENIGMA EXAMPLE — Fauzan Mirza provides an example of a three rotor Enigma enci-
pherment.

WOPADIMA — XERXES III is offering a set of programs to ease the work related to
maintaining word dictionaries.

SOME CLASSIC CIPHERS — Sherry Mayo has a brief overview of some basic cipher sys-
tems, with examples.

GUTS OF RSA — Francis Litterio reviews the basic math behind public key cryptography.

Plus: News and notes for computerists interested in cryptography, and cryptographers in-
terested in computers.

Published in association with the American Cryptogram Association

INTRODUCTORY MATERIAL

The ACA and Your Computer (1p). Background on the ACA for computerists. (As printed in ACA and
You, 1988 edition; [Also on Issue Disk #11]

Using Your Home Computer (1p). Ciphering at the ACA level with a computer. (As printed in ACA and
You, 1988 edition).

Frequently Asked Questions (approx. 20p) with answers, from the Usenet newsgroup sci.crypt.

REFERENCE MATERIAL

BASICBUGS - Bugs and errors in GW-BASIC (1p). [Also on Issue Disk #11].
BBSFILES - List of filenames and descriptions of cryptographic files available on the ACA BBS (files also
available on disk via mail).

BIBLIOG—A bibliography of computer magazine articles and books dealing with cryptography. (Updated
August 89). [available on Issue Disk #11].

CRYPTOSUB - Complete listing of Cryptographic Substitution Program as published by PHOENIX in
sections in The Cryptogram 1983–1985. (With updates from CS #2,3). [available on Issue Disk #3].

DISKEX - A list of programs and reference data available on disk in various formats (Apple—Atari—
TRS80—Commodore—IBM—Mac). Revised March 1990.

ERRATA sheet and program index for Caxton Foster’s Cryptanalysis for Microcomputers (3p). (Reprint
from CS #5,6,7 and 9) [disk available from TATTERS with revised programs].

BACK ISSUES

$2.50 per copy. All back issues from #1 to #19 are available from the Editor.

ISSUE DISKS

$5 per disk; specify issue(s), format and density required. All issues presently fit on two IBM High Density
3.5 inch (1.44M) floppy disks, archived with PKZIP. For other disk formats, ask. Disks contain programs
and data discussed in the issue. Programs are generally BASIC or Pascal, and almost all executables are
for IBM PC–compatible computers. Issue text in TEX format is available for issues 16 to current. Available
from the Editor.

TO OBTAIN THESE MATERIALS

Write to: Or via Electronic Mail:

Dan Veeneman dan@decode.com

PO Box 2442

Columbia, Maryland

21045-2442, USA.

Allow 6–8 weeks for delivery. No charge for hard copies, but contributions to postage appreciated. Disk
charge $5 per disk; specify format and density required. ACA Issue Disks and additional crypto material
resides on Decode, the ACA Bulletin Board system, +1 410 730 6734, available 24 hours a day, 7 days a
week, 300/1200/2400/9600/14400 baud, 8 bits, No Parity, 1 stop bit. All callers welcome.

SUBSCRIPTION

Subscriptions are open to paid-up members of the American Cryptogram Association at the rate of US$2.50
per issue. Contact the Editor for non-member rates. Published three times a year or as submitted ma-
terial warrants. Write to Dan Veeneman, PO Box 2442, Columbia, MD, 21045-2442, USA. Make checks
payable to Dan Veeneman. UK subscription requests may be sent to G4EGG.

CHECK YOUR SUBSCRIPTION EXPIRATION by looking at the Last Issue = number on your
address label. You have paid for issues up to and including this number.

1

Building a Word List Using dBase
PARROT

A word list, or a dictionary, can be a valuable
tool when you are trying to solve Aristocrats.

My dictionary comes from three sources. I
purchased from Public Brand Software a huge,
3 disk list of words, which in most cases would
be sufficient. C Users catalog furnished me
with another list along with a spell-checker
I’ve never used. My third source came from
the spell-checker of Microsoft Word version
3.0.

The words were imported into dBase, and
separated by length into 3 through 22 letter
words. Here is the exact dBase source code
to build your own dictionary using an ASCII
word list:

*first create a main dictionary file

.crea dict

Field Name Type Width Dec

===============================

1 WORD Character 25

press ENTER to finish. This creates a very sim-
ple structure of one field containing 25 char-
acters.

Then from the command line, type:

.appe from words.txt deli

words.txt is the ASCII file that is holding
your word list. deli stands for delimited by,
or separated by, and in this case there aren’t
any separations.

Then go ahead and create 22 more databases
with field lengths corresponding with the word
length. dict8.dbf has my 8 letter words,
dict10.dbf has my 10 letter long words, and
so on. Here is the code to separate the
dict.dbf into separated word length:

store 0 to count

do while .t.

store count+1 to count

use dict

go count

store trim(word) to a

*trim deleted the trailing spaces.

if len(a)=3

use dict3

appe blank

repla word with a

loop

endif

if len(a)=4

use dict4

appe blank

repla word with a

loop

endif

**And so on until you reach your desired length

enddo

2 Computer Supplement 20

This is a very time-consuming routine. A
386/25 took an hour to separate out a 300,000
word list. I actually did it in three stages,
and this comprehensive list is really too long.
As a dictionary fails me, I go to the monster
list that hasn’t let me down yet. SO94, A-14,
I used this to find BRONTEPHOBIA. My dictio-
nary goes to dict22, but I hardly ever use the

lengths over eleven.

When you are combining lists from different
sources, they must be sorted, and the dupli-
cates weeded out. The different sources must
be broken down to word lengths individually.
You may end up with, for example, word8.dbf
and dict8.dbf. Here’s the code to combine
them into one:

.use word8

.appe from dict8 (put all the contents of dict8 into word8)

.sort on word to dict8 (sort the combined list back into dict8)

dict8.bf already exists, overwrite it? (Y/N) yes

the write dupes.prg

use dict8

do while .t.

store word to a

skip

if word=a

dele

endif

enddo

.pack (this will write the non-deleted records into dict8)

And you can go ahead and delete word8.dbf.

Broken down like this, I use the dictionary

constantly. If you have a simple pattern word
you wish to search for, say JKMJXXJPN from
SO94 A-11:

.use dict9

.copy stru to temp

.use temp

.appe from dict9 from substr(word,1,1)=substr(word,4,1)

580 records added

(add from dict9 all nine letter words where the first and fourth

letters are the same. I got 580).

.dele all from substr(word,4,1)#substr(word,7,1)

556 records deleted

(delete all words where fourth letter does not equal seventh)

.dele all for substr(word,5,1)#substr(word,6,1)

Autumn 1995 3

23 records deleted

.pack

1 record copied

(pack writes all the records not marked for deletion)

.display (your answer) EXCELLENT

Pattern words are extracted from the dictio-
nary as shown above, but what about nine let-
ter words without any of the same letters in

the word? I keep a special file just for those.
Creating the files goes like this, but I will show
four letter words to save space:

.!copy dict4.dbf to temp4.dbf

.use temp4

.dele all for substr(word,1,1)=substr(word,2,1)

.dele all for substr(word,1,1)=substr(word,3,1)

.dele all for substr(word,1,1)=substr(word,4,1)

.dele all for substr(word,2,1)=substr(word,3,1)

.dele all for substr(word,2,1)=substr(word,4,1)

.dele all for substr(word,3,1)=substr(word,4,1)

.pack

This routine creates a special holding file just
for four letter words with non-repeating let-
ters, since it is quite time consuming to extract

the non-pattern words.

I hope to hear some feedback on this type of
an article.

CRYPTOSYSTEMS JOURNAL

After two and a half years, Tony Patti has
done it again. The Cryptosystems Journal,
Volume 3 , weighing in with more than 150
pages, is another substantial compilation of
software, hardware designs, and current cryp-
tological news.

Tony, now a Director of College Comput-
ing and CIO, covers the PEAK cryptosystem,
steganography, PGP and Warlock. He gives a
detailed description of an improved RANGER

device for generating random numbers. He
also covers chaos, the NSA, and a variety of
other topics.

Contact:

Tony Patti

485 Middle Holland Road

Holland, PA 18966

(215) 579-9888

4 Computer Supplement 20

A TYRO’s COMPUTER SOLUTION OF A TOTALLY UNKNOWN CIPHER
Conrad M. Phillippi

Among my deceased father’s papers I discov-
ered a cipher of some 15,000 characters. It had
no word spaces and was broken into random
length blocks. Being new to the subject with
absolutely no idea how to break a cipher I con-
sulted several books. They were mostly anec-
dotal, and the methods given required some
starting clues or prior knowledge of the class
of cipher. So with no idea on where I was
going, I attacked it by first creating a data
file, and then programming a monogram fre-
quency distribution in QuickBasic. This was
more random-like than English-like. Digram
and trigram distributions gave some interest-
ing results but no leads. Then, studying the
text I noted some repetitive letter groups so I
wrote a string search program to locate all of
them.

This got me interested in certain repeat groups
such as XOEXEOX which in itself was a blind
alley. But this led to a study of the very
simplest repeat groups of the form ABnAB,
where n is a string of irrelevant characters, out
to n as large as 30. Frequency plots revealed
some clearly non-random peaks at n = 5 and
n = 19, and smaller peaks in the noise at
n = 12 and n = 26. This suggested a peri-
odicity of length 7 and that, in turn, a 7-letter
keyword. At about this point I learned of the
ACA and wrote to MICROPOD for a refer-
ence directed at breaking ciphers.

Meanwhile I did monogram distributions of
period 7 and got more English-like results.
Then I came across Kerckhoff’s method for
solving the Vigenère cipher and, on a hunch,
programmed it.

I was disappointed when it yielded most prob-
able keywords of 7 random letters and was
ready to give up, but decided to go the last
step, having invested so much time in the
project already. Amazingly, plaintext filled
the screen!

The very next day PHOENIX’s reply ar-
rived. He had promptly solved some sample
text I had sent. The cipher turned out to be
a diary of sorts. It was stripped of high fre-
quency letters, loaded with Qs and Zs and full
of abbreviations, all carefully planned.

In retrospect, I arrived at the solution by a
great deal of groping, some logical analysis up
to a point, and then a bit of luck or intuition
at the end. The computer was useful for pro-
cessing this great mass of data. But being
able to program was invaluable for following
up promptly on questions and ideas as they
arose.

Since then I have joined the ACA, have ob-
tained all back issues of the Computer Sup-
plement , and have become interested in the
interplay between mind and computer in this
fascinating subject.

Autumn 1995 5

CLASSICAL CRYPTOGRAPHY COURSE
LANAKI

SUMMARY

I can not tell you how much it means to me be
President of the ACA. It is an acceptance by
ones peers at the highest level. It took nearly
32 years to arrive in this seat. I could not be
more proud. I want to put back into the or-
ganization some of the trust, knowledge and
friendship afforded to me so freely over the
years. I intend for this course to be my pos-
itive legacy and will work towards that end
with enthusiasm.

We are taking a bold step with the first “elec-
tronic cryptography course.” I hope that we
can develop enough material to collate into a
book (or notes) that shall be donated to the
ACA at no cost. As long as I can underwrite
the project, all members would have free ac-
cess to the ACA ’s Course in Classical Cryp-
tography for their enjoyment and learning. We
work as a team, we share technology as a team,
we solve as a team, we succeed as a team.

As of this writing, I have received about fifty
five (55) responses from KREWE interested in
participating. Here is my preliminary plan of
action that has been approved by our EB to
commence October 1, 1995:

GOALS

1. ACA correspondence course will act as
an “in-depth” review of the various ci-
pher systems. The “how to’s” can be
explored with an experienced ACA fa-
cilitator.

2. Classical cipher systems can be attacked
in several different ways with the object
of learning the basic tools for cryptanal-
ysis as well as the history.

3. There are lots of entries into cryp-
tograms, so both student and teacher
can learn together. We will publish these
procedures to build a tool kit.

4. Cipher variants and special cases can be
discussed as appropriate. ACA experts
will be asked to help in these areas.

5. The historical significance and develop-
ment of important cipher systems will be
covered.

FACILITATOR

Since the class size (as of this writing) is still
reasonable at (55), I have volunteered to act
as an ACA course facilitator. Fifty (60) con-
current “honor” students is about my limit
for the first course. (I also teach Tae Kwon
Do three nights per week plus demo team on
Saturdays. CCPD has asked me to teach two
Rape-Defense courses this winter, so my plate
is semi-full.) LEDGE has graciously offered
his expert help on the Cryptarithms section.

STUDENTS

Students will be asked to classify their clas-
sical crypto experience so that responses can
be directed appropriately. There will be no
tests or unsolvable challenges, just the pure
intellectual enjoyment of learning the history,
science and recreation of cryptography. We
do not pass or fail, we improve our abilities,
we become more adept, we laugh together, we
grow together. We are self-directed. We at-
tack cryptographic problems. Those who sur-
vive will be awarded a ACA Diploma as valued
as any degree on your wall.

READING LIST & REFERENCES

A reading list will be sent/published for all
students. As the course progresses and we (fa-
cilitator/student) find more, then the list will
be improved and updated. The reading list
will be publicly available. References will be
updated frequently by all to improve our prac-
tical “tool kit.”

6 Computer Supplement 20

NOTES AND ASSIGNMENTS

Classical Cryptography will run for approxi-
mately a year and cover most of the ciphers
in ACA and You. The notes that we generate
as facilitator/student become the property of
ACA and may be published at the discretion
of the Executive Board or Editor of the Cryp-
togram. First rights of refusal of course ma-
terials is expressly given to the ACA. Notes,
assignments (yes, I give plenty of homework
and special projects) will be available on the
ACA-L or from the facilitator. I have asked
XAMEN EK to monitor course assignments
as ’specials’ to be added to member SOL to-
tals.

COURSE EXPENSES

Expenses for course materials are the respon-
sibility of the student. ACA facilitator efforts
are complimentary.

TENETS

Some of the greatest “solves” in cryptography
have been accomplished by those with little
professional experience and with a different
approach to offer. All levels of student are in
my class, from beginner to PhD and beyond.
When we write to each other or use the ACA-L
list, I would ask that we endeavor to aspire to
the tenets of courtesy, integrity and respect.
All student questions are not only encouraged
but are essential to our collective growth.

EXCEPTIONS AND ACCESS

Although public key cryptography will be dis-
cussed, it is not a primary focus of this course.
The course is limited to ACA members only.
Students agree not to export to the INTERNET
any ACA materials and to respect the copy-
rights of the various authors referenced. Those
with access via computer and modem are rec-
ommended (but not required) to subscribe and
use the ACA electronic mailing list, found at

ACA-L@vm1.nodak.edu

and the Crypto Drop Box (CDB), run su-
perbly by NORTH DECODER and his
team. Call Dr. Metzger or E-Mail him at
metzger@rs1.cc.und.nodak.edu to get de-
tails and copies of my recent papers.

Let me know what your interests are so I can
plan/direct this course appropriately. You are
my customers and I shall do my best to meet
your needs. Let ACA help you learn more
about cryptography. Enjoy the fun and pain.
Persevere.

Best regards,

LANAKI

Contact: (512) 777-2678 Work

(512) 777-2684 FAX

(512) 991-3911 Home

E-Mail 75542.1003@compuserve.com

Autumn 1995 7

NURSERY RHYME VIGENÈRE
William Corcoran

I use “multiloop Vigenère” to express a generic
class of substitution ciphers, with the Hagelin
system and rotor systems being subsets of the
class, along with the oldtime multiloop Vi-
genère. Everything is expressed in numbers

for a character set of C members, together
with mod C addition for encipherment and
subtraction for decipherment, so the classic
tableaus for Vigenère, cogs for Hagelin, and
wires for rotors, are thrown out the window.

VIGEN NU.BAS

rem This is "Nursery rhyme Vigenere".

rem It enciphers a plain text message or deciphers an enciphered message.

rem Messages are drawn from a set of C=40 characters (26 letters of the

rem alphabet, digits 0-9, period, and - or ’or / for showing space between

rem words), and are converted to numbers to form a series of message numbers.

rem Key is made up of N easy-to-remember lines from nursery rhymes and is

rem entered from the key board. The lines are converted to numbers and

rem corresponding terms are added mod C to produce the enciphering series.

rem The period of the enciphering series is the LCD (least common

rem denominator) of the key line lengths.

rem The enciphering series terms are combined with corresponding terms

rem from the message number series to produce output numbers, which are

rem finally converted back to characters to produce the output message.

rem Plaintext or ciphertext are entered from file. Output is sent to file

rem as well as to a printer.

rem Obviously, other easy-to-remember lines could be used as well as

rem nursery rhymes.

C = 40

input"What is the message’s file name ? ", messname$

lprint"The message is drawn from file: ";messname$

open messname$ for input as #1

input #1, Msgtxt$

close #1

lprint"Message text as entered: ";Msgtxt$

L = len(Msgtxt$) ’ number of characters in the message string

lprint"There are ";L;" characters in the message"

lprint

input"How many lines in the key ? ",N

dim lkey$(N)

dim lline(N)

lprint"Key lines are: "

for i = 1 to N

print"Enter key line ";i

input lkey$(i)

lline(i) = len(lkey$(i))

8 Computer Supplement 20

lprint lkey$(i)

next i

lprint"Line lengths are: ";

for i = 1 to N

lprint lline(i);

next i

lprint

lprint"The enciphering series period will be the LCD of these line lengths."

input"Enter EE if this is an enciphering action, DD if deciphering: ",AAct$

if AAct$ = "EE" then

z = 1 ’ will make enciphering series additive

print"This is an enciphering action. "

elseif AAct$ = "DD" then

z = -1 ’ will make enciphering series subtractive

print"This is a deciphering action. "

else

print"You must choose EE or DD ! "

end if

dim enciph%(L) ’ this will be the enciphering series

dim kkey%(N,L) ’ lines of key converted to numbers

dim outnumb%(L) ’ output numbers will be converted to output text

for i = 1 to N ’ form number array from lines in key

xx$ = lkey$(i)

for j = 1 to L

jj = j mod lline(i) ’ will cycle key line i

if jj = 0 then jk = lline(i) else jk = j mod lline(i)

x$ = mid$(xx$,jk,1)

call charnumb ’ converts key text to number equivalents

kkey%(i,j) = numb

next j

next i

lprint

lprint"ENCIPHERING SERIES: "

for i = 1 to L ’ form enciphering series

y% = 0 ’ initialize to start position i

for j = 1 to N

y% = y% + kkey%(j,i) ’ increments y% at position i

next j

enciph%(i) = y% mod C

lprint enciph%(i);

next i

lprint

dim txtnumb%(L) ’ convert message text to number equivalents

lprint"Message text converted to numbers: "

for i = 1 to L

x$ = mid$(Msgtxt$, i,1)

call charnumb

txtnumb%(i) = numb

Autumn 1995 9

lprint numb;

next i

lprint

input"Select a file name for the output message: ",cimsg$

lprint"Output message numbers: "

for i = 1 to L

xz = z * enciph%(i) ’ z sets add for EE or subtract for DD

xc = xz + txtnumb%(i) ’ combines textnumb%() and enciph%()

if xc < 0 then xc = xc + C ’ avoids negative result when deciphering

x% = xc mod C

lprint x%;

outnumb%(i) = x%

next i

lprint

for i = 1 to L

x% = outnumb%(i)

call numchar ’ converts output numbers to characters

charciph$ = charciph$ + ltr$ ’ builds output string

next i

open cimsg$ for output as #2

write #2, charciph$

close #2

lprint"Resulting text: ";charciph$

lprint"This is filed as ";cimsg$

sub charnumb ’ needed to convert characters to numbers

shared numb, x$

select case x$

case "A", "a"

numb = 1

case "B", "b"

numb = 2

case "C", "c"

numb = 3

case "D", "d"

numb = 5

case "E", "e"

numb = 6

case "F", "f"

numb = 7

case "G", "g"

numb = 8

case "H", "h"

numb = 9

case "I", "i"

numb = 10

case "J", "j"

numb = 11

case "K", "k"

numb = 12

case "L", "l"

numb = 13

case "M", "m"

numb = 15

case "N", "n"

numb = 16

case "O", "o"

numb = 17

case "P", "p"

numb = 18

case "Q", "q"

numb = 19

case "R", "r"

numb = 20

case "S", "s"

numb = 21

10 Computer Supplement 20

case "T", "t"

numb = 22

case "U", "u"

numb = 23

case "V", "v"

numb = 25

case "W", "w"

numb = 26

case "X", "x"

numb = 27

case "Y", "y"

numb = 28

case "Z", "z"

numb = 29

case "1"

numb = 30

case "2"

numb = 31

case "3"

numb = 32

case "4"

numb = 33

case "5"

numb = 34

case "6"

numb = 36

case "7"

numb = 37

case "8"

numb = 38

case "9"

numb = 39

case "0"

numb = 35

case "."

numb = 0

case "’"

numb = 4

case "/"

numb = 14

case "-"

numb = 24

end select

end sub

sub numchar ’ convert numbers to their corresponding letters

shared x%, ltr$

select case x%

case 1

ltr$ = "A"

case 2

ltr$ = "B"

case 3

ltr$ = "C"

case 4

ltr$ = "’"

case 5

ltr$ = "D"

case 6

ltr$ = "E"

case 7

ltr$ = "F"

case 8

ltr$ = "G"

case 9

ltr$ = "H"

case 10

ltr$ = "I"

case 11

ltr$ = "J"

case 12

ltr$ = "K"

case 13

ltr$ = "L"

case 14

ltr$ = "/"

case 15

ltr$ = "M"

case 16

ltr$ = "N"

case 17

ltr$ = "O"

case 18

ltr$ = "P"

case 19

ltr$ = "Q"

case 20

ltr$ = "R"

case 21

ltr$ = "S"

case 22

ltr$ = "T"

Autumn 1995 11

case 23

ltr$ = "U"

case 24

ltr$ = "-"

case 25

ltr$ = "V"

case 26

ltr$ = "W"

case 27

ltr$ = "X"

case 28

ltr$ = "Y"

case 29

ltr$ = "Z"

case 30

ltr$ = "1"

case 31

ltr$ = "2"

case 32

ltr$ = "3"

case 33

ltr$ = "4"

case 34

ltr$ = "5"

case 35

ltr$ = "0"

case 36

ltr$ = "6"

case 37

ltr$ = "7"

case 38

ltr$ = "8"

case 39

ltr$ = "9"

case 0

ltr$ = "."

end select

end sub

end

D1 OUT

Message text as entered: A43’JFCY’WNIL-P0XP/RB6’BV/8N1XXPO-S.KQSN1GUQ’8JBTROA

’C4HSQVR8/48F8B7/ME1NR2-KBMQ30/G-WDCR1NN6KZVJW.DAW6GEAEI-UM6O-M18R/.PFC

/K5CBNYW0/KL.KR6LCSAXWJFV7ME6GAD055GHQFQLRKFVLHGUN/.P9.TA.DY0FEC2O6L’H3RJ5PMF

.GHLICZ8RRT6UPMC-K1J9I6/

There are 224 characters in the message

"Key lines are: "

"jackandjill"

"wentupthehill"

"tofetchapailofwater"

Line lengths are:

11 13 19

"The enciphering series period will be the LCD of these line lengths."

"ENCIPHERING SERIES: "

19 24 26 0 6 37 36 21 34 23 33 37 31 36 4 18 20 34 9 14 39

26 26 33 19 34 28 0 22 3 6 8 2 6 8 34 28 34 11 8 24 32 17

39 38 24 30 19 20 39 35 31 22 20 11 39 4 3 11 17 28 36 24

32 27 17 18 27 38 12 26 24 15 39 25 3 8 1 34 15 10 26 8

24 11 20 29 35 38 21 2 39 29 38 7 16 5 2 28 39 13 22 26

32 3 21 0 9 3 17 34 32 15 1 33 6 25 3 38 32 4 35 37 26

31 20 2 22 10 24 21 25 7 5 3 37 29 7 14 29 21 4 27 7 20

36 1 10 35 9 26 36 4 0 31 20 11 21 26 39 6 30 2 35 36 27

37 17 7 33 2 3 10 0 37 17 23 16 13 0 15 39 4 34 33 21 37

11 29 32 0 27 33 24 6 39 28 30 11 25 31 7 27 29 0 22 5

12 Computer Supplement 20

32 19 39 34 32 1 1 1 23 18 37 24 36 37 4 16 14

Message text converted to numbers:

1 33 32 4 11 7 3 28 4 26 16 10 13 24 18 35 27 18 14 20 2

36 4 2 25 14 38 16 30 27 27 18 17 24 21 0 12 19 21 16 30 8

23 19 4 38 11 2 22 20 17 1 4 3 33 9 21 19 25 20 38 14 33

38 7 38 2 37 14 15 6 30 16 20 31 24 12 2 15 19 32 35 14 8

24 26 5 3 20 30 16 16 36 12 29 25 11 26 0 5 1 26 36 8 6

1 6 10 24 23 15 36 17 24 15 30 38 20 14 0 18 7 3 14 12 34

3 2 16 28 26 35 14 12 13 0 12 20 36 13 3 21 1 27 26 11 7

25 37 15 6 36 8 1 5 35 34 34 8 9 19 7 19 13 20 12 7 25

13 9 8 23 16 14 0 18 39 0 22 1 0 5 28 35 7 6 3 31 17 36

13 4 9 32 20 11 34 18 15 7 0 8 9 13 10 3 29 38 20 20 22

36 23 18 15 3 24 12 30 11 39 10 36 14

Output message numbers:

22 9 6 4 5 10 7 7 10 3 23 13 22 28 14 17 7 24 5 6 3 10

18 9 6 20 10 16 8 24 21 10 15 18 13 6 24 25 10 8 6 16 6

20 6 14 21 23 2 21 22 10 22 23 22 10 17 16 14 3 10 18 9 6

20 21 24 10 16 3 20 6 1 21 6 21 4 1 21 4 22 9 6 24 13 6

16 8 22 9 14 17 7 14 22 9 6 24 12 6 28 4 10 16 3 20 6 1

21 6 21 4 2 23 22 24 13 17 16 8 14 12 6 28 21 14 1 20 6

4 5 10 7 7 10 3 23 13 22 24 22 17 14 20 6 15 6 15 2 6 20

0 4 1 14 15 23 13 22 10 13 17 17 18 24 25 10 8 6 16 6 20

6 14 3 1 16 24 9 1 25 6 24 1 14 25 6 20 28 4 13 17 16 8

14 12 6 28 4 22 9 1 22 24 10 21 24 6 1 21 28 4 22 17 14

20 6 15 6 15 2 6 20 0

"Resulting text: ","THE’DIFFICULTY/OF-DECIPHERING-SIMPLE-VIGENERE/SUBSTITUTION

/CIPHERS-INCREASES’AS’THE-LENGTH/OF/THE-KEY’INCREASES’BUT-LONG/KEYS/ARE’

DIFFICULT-TO/REMEMBER.’A/MULTILOOP-VIGENERE/CAN-HAVE-A/VERY’LONG/KEY’THAT-IS-

EASY’TO/REMEMBER."

E1 OUT

Message text as entered: The’difficulty/of-deciphering-simple-Vigenere

/substitution/ciphers-increases’as’the-length/of/the-key’increases’but

-long/keys/are’difficult-to/remember.’A/multiloop-Vigenere/can-have-a

/very’long/key’that-is-easy’to/remember.

There are 224 characters in the message

Key lines are:

jackandjill

wentupthehill

tofetchapailofwater

Line lengths are:

11 13 19

"The enciphering series period will be the LCD of these line lengths."

ENCIPHERING SERIES:

19 24 26 0 6 37 36 21 34 23 33 37 31 36 4 18 20 34 9 14

39 26 26 33 19 34 28 0 22 3 6 8 2 6 8 34 28 34 11 8 24

32 17 39 38 24 30 19 20 39 35 31 22 20 11 39 4 3 11 17

28 36 24 32 27 17 18 27 38 12 26 24 15 39 25 3 8 1 34 15

10 26 8 24 11 20 29 35 38 21 2 39 29 38 7 16 5 2 28 39

Autumn 1995 13

13 22 26 32 3 21 0 9 3 17 34 32 15 1 33 6 25 3 38 32 4

35 37 26 31 20 2 22 10 24 21 25 7 5 3 37 29 7 14 29 21

4 27 7 20 36 1 10 35 9 26 36 4 0 31 20 11 21 26 39 6 30

2 35 36 27 37 17 7 33 2 3 10 0 37 17 23 16 13 0 15 39 4

34 33 21 37 11 29 32 0 27 33 24 6 39 28 30 11 25 31 7 27

29 0 22 5 32 19 39 34 32 1 1 1 23 18 37 24 36 37 4 16 14

Message text converted to numbers:

22 9 6 4 5 10 7 7 10 3 23 13 22 28 14 17 7 24 5 6 3 10

18 9 6 20 10 16 8 24 21 10 15 18 13 6 24 25 10 8 6 16 6

20 6 14 21 23 2 21 22 10 22 23 22 10 17 16 14 3 10 18 9

6 20 21 24 10 16 3 20 6 1 21 6 21 4 1 21 4 22 9 6 24 13

6 16 8 22 9 14 17 7 14 22 9 6 24 12 6 28 4 10 16 3 20 6

1 21 6 21 4 2 23 22 24 13 17 16 8 14 12 6 28 21 14 1 20

6 4 5 10 7 7 10 3 23 13 22 24 22 17 14 20 6 15 6 15 2 6

20 0 4 1 14 15 23 13 22 10 13 17 17 18 24 25 10 8 6 16 6

20 6 14 3 1 16 24 9 1 25 6 24 1 14 25 6 20 28 4 13 17

16 8 14 12 6 28 4 22 9 1 22 24 10 21 24 6 1 21 28 4 22

17 14 20 6 15 6 15 2 6 20 0

Output message numbers:

1 33 32 4 11 7 3 28 4 26 16 10 13 24 18 35 27 18 14 20 2

36 4 2 25 14 38 16 30 27 27 18 17 24 21 0 12 19 21 16 30

8 23 19 4 38 11 2 22 20 17 1 4 3 33 9 21 19 25 20 38 14

33 38 7 38 2 37 14 15 6 30 16 20 31 24 12 2 15 19 32 35

14 8 24 26 5 3 20 30 16 16 36 12 29 25 11 26 0 5 1 26 36

8 6 1 6 10 24 23 15 36 17 24 15 30 38 20 14 0 18 7 3 14

12 34 3 2 16 28 26 35 14 12 13 0 12 20 36 13 3 21 1 27

26 11 7 25 37 15 6 36 8 1 5 35 34 34 8 9 19 7 19 13 20

12 7 25 13 9 8 23 16 14 0 18 39 0 22 1 0 5 28 35 7 6 3

31 17 36 13 4 9 32 20 11 34 18 15 7 0 8 9 13 10 3 29 38

20 20 22 36 23 18 15 3 24 12 30 11 39 10 36 14

"Resulting text: ","A43’JFCY’WNIL-P0XP/RB6’BV/8N1XXPO-S.KQSN1GUQ’8JBTROA

’C4HSQVR8/48F8B7/ME1NR2-KBMQ30/G-WDCR1NN6KZVJW.DAW6GEAEI-UM6O-M18R/.PFC

/K5CBNYW0/KL.KR6LCSAXWJFV7ME6GAD055GHQFQLRKFVLHGUN/.P9.TA.DY0FEC2O6L’H3RJ5PMF

.GHLICZ8RRT6UPMC-K1J9I6/"

SECRET WRITING EQUIPMENT

Crayola has come out with a product called
Secret Writers MarkersTM , advertised as

Write a secret message with the
invisible writer, use the color de-
coder to reveal it!

The package contains two “invisible writers”
and six “color decoders” that allow the users

to create and later develop hidden messages.
This may be just the thing to introduce chil-
dren to cryptography and “secret writing.”

I found a set in the office supply section of
a local discount store. Also, Crayola main-
tains a question and comment line at 1-800-
CRAYOLA, available weekdays 9 am to 4 pm
Eastern time.

14 Computer Supplement 20

DIGITAL SIGNATURES
Fire-O

The two greatest developments in cryptogra-
phy over the past 15 years have been Pub-
lic Key Cryptography and Digital Signatures.
These two developments go hand-in-glove.
Public key cryptography is most valuable pre-
cisely because it provides digital signatures,
and digital signatures depend on the methods
of public key cryptography.

A digital signature is analogous to a hand-
written signature. A hand signature on a piece
of paper, such as a will or contract, assures
anyone who sees that document that it is gen-
uine. A digital signature does the same thing
for a message sent electronically through a
message system, such as a computer network.

To be fully useful, the digital signature must
do three things. First, it must assure the re-
ceiver that the message comes from the in-
dicated sender. Second, it must assure the
receiver that the message has not been al-
tered in any way. Third, the signature must
prove to an impartial third party that the mes-
sage is genuine, and comes from the purported
sender.

Conventional secret key cryptography can sat-
isfy the first two requirements. If the sender
and receiver have decided on a secure crypto-
graphic method, and agreed on a unique key,
then any message encrypted by that method
using that key must be genuine.

The third requirement, however, is not easy to
achieve with conventional cryptography. Sup-
pose that the receiver shows a judge a mes-
sage, and says that it came from a certain
sender. How is the judge to know if sender
and receiver had such an arrangement?

It could be that the receiver made up both the
message and the key. Also, the judge will now
be able to read all past and future messages
between this sender and receiver, and create
fake messages. A system of digital signatures

must rely solely on public information, and not
on private methods or keys.

The need to verify the validity of messages has
been solved in the computer field for many
years. In the early days of computers, data
transmission was somewhat unreliable. So it
became a convention to add hash values or
checksums to messages. A very simple exam-
ple is for the sender to add all of the characters
in a message, and append the sum to the end.
The receiver does the same. If the message
has been garbled, the sums won’t match.

That simple method words fine for acciden-
tal changes to a message, but it provides lit-
tle protection against deliberate tampering.
A person altering the message could either
change the checksum, or make two changes
to the message so that the checksum is un-
changed.

There are really two problems here. The first
is that the interloper knows what the check-
sum is, and can change the checksum, and the
second is that it is easy to figure out how to
change the message so the checksum doesn’t
change. So even if we protected the check-
sum, say by enciphering it, or by sending it
separately from the message, we cannot guar-
antee the validity of the message.

This problem is solved by using what is called
a one-way hash function. This is a function
that is easy to compute, but difficult to invert
or reverse. Such functions are very hard to
find, but a few are known. Probably the sim-
plest such function is just squaring the num-
ber.

Suppose that N is a very large number, say
130 decimal digits or longer, and N is the
product of two large primes p and q, which
are at least 50 digits each. (A prime number
is an integer which is not the product of two
smaller integers. For example, 2, 3, 5, and
7 are primes, but 9 is not, since it is 3 × 3.)

Autumn 1995 15

It is very difficult to factor such a large num-
ber, that is to find p and q. It could take
many years, even on today’s fastest comput-
ers. If A is any number, let A mod N denote
the residue or remainder when A is divided by
N . That is, we ignore the quotient, and just
keep the remainder. For example, 18 mod 6 is
0, 19 mod 6 is 1, 20 mod 6 is 2, and so forth.

If A is an unknown number, and we know the
value of p and q, then if we are given the value
of A2 mod N we can easily find A. There is a
formula that gives A directly from A2 mod N .
But if we don’t know the factors of N , then
there is no way to find A from A2 mod N . It
is easy for anyone to compute A2 mod N , just
multiply A times A, divide by N , and keep the
remainder. But, given just A2 mod N and N ,
it is very difficult to find A. So this function
A2 mod N is a good one-way hash function.

Given a one-way hash, it is now easy to get a
digital signature. Any message may be treated
as a numerical value in a variety of ways.
For example, the characters of the message
may be represented as two-digit decimal num-
bers, A = 01, B = 02, Z = 26. Then
the message HELP would have the numeric
value 08051216, or 8051216, dropping the ini-
tial zero.

Suppose, now, that every sender in the mes-

sage network has chosen one of these giant
numbers, N , as a public key, and that these
keys are all publicly known. For example,
there may be a book published giving every-
one’s key, or there may be a public computer
file that contains everyone’s name and key.

If a given sender wants to send and sign the
message HELP, all that is needed is to find
the number S (the signature) whose square is
8051216. Since the sender knows the factors
of N , this is easy. Then the sender transmits
8051216 followed by the signature, S. The re-
ceiver can square the signature, that is com-
pute S2 mod N , and compare it to 8051216. If
it matches, the message must be genuine and
must come from the sender, because nobody
else could have computed the signature.

Another person could not change the message,
because that would require finding a differ-
ent signature. Since the sender’s public key
is known to everyone, the receiver could show
the message and signature to a third party,
and that party could verify independently that
the message was genuine.

A digital signature is far more difficult to fake
than a written signature. It provides a secure
way of transmitting contracts, cash or stock
transfers, judicial decisions, or any message
where reliable communications are critical.

ACA COMPUTER BULLETIN BOARD UPDATE

All members of Krewe are welcome to use the
ACA bulletin board system, Decode, for elec-
tronic mail to the Internet. It is available 24
hours a day at +1 410 730 6734.

Each user will automatically gain an Internet
address of the form < user >@decode.com,

and may correspond via e-mail to members of
the Krewe and other Internet users.

The FILES section also contains various ACA
and cryptographic-related files and programs,
as well as an assortment of other topics.

16 Computer Supplement 20

3-ROTOR ENIGMA ENCIPHERMENT EXAMPLE
Fauzan Mirza

How the Enigma works:

P 1 2 3 R

key --------->|->|->|->|->|

| | | | |

output <------|<-|<-|<-|<-|

P: Patchpanel

1: Rotor 1

2: Rotor 2

3: Rotor 3

R: Reflecting rotor

Current passes through the rotors : 1 2 3 R

3 2 1

The order that the three rotors operate can
be changed. The patchpanel operates on the
character before and after it has been pro-
cessed by the rotors.

The reflecting rotor is like the other rotors ex-
cept that the mapping is symmetrical.

MACHINE PREPARATION

Rotor wirings:

Input: ABCDEFGHIJKLMNOPQRSTUVWXYZ

1: EKMFLGDQVZNTOWYHXUSPAIBRCJ

2: AJDKSIRUXBLHWTMCQGZNPYFVOE

3: BDFHJLCPRTXVZNYEIWGAKMUSQO

4: ESOVPZJAYQUIRHXLNFTGKDCMWB

5: VZBRGITYUPSDNHLXAWMJQOFECK

R: YRUHQSLDPXNGOKMIEBFZCWVJAT

1. Select three out of the five rotors and
arrange them in an order.

2. Select the rotor ring settings and start-
ing positions.

3. Connect pairs of letters on the plug-
board.

These are the key to the enciphered message.

Example:

Rotor order: 3 1 2

Alphabet ring setting: W X T

Rotor starting positions: A W E

Plugboard: (AM) (TE)

ENCIPHERMENT

Get input character to encipher.

Example: Input character is T. It will be ma-
nipulated during the encryption process, and
we shall always refer to the current form of the
letter as the input character (even though it is
unlikely to resemble the original letter).

Each rotor has a physical notch on it which
determines when the next rotor is stepped up.
The following table shows which letter is vis-
ible in the rotor window when the notch is in
the engaged position:

Rotor notches:

1: Q

2: E

3: V

4: J

5: Z

Remember that the notch is physical and will
step up regardless of which rotor order is being
used.

Step up the first rotor. If the first rotor has
reached its notch then step up the second ro-
tor.

Example: When the first rotor, rotor 3,
reaches V then the second rotor, rotor 1, steps
up to X.

If the second rotor just reached its notch after
being stepped up then at the next round, step
both the second and third rotors up once.

Example:

Rotor positions: B W E

Autumn 1995 17

PATCHPANEL

The patchpanel modifies the input character
depending on the plugboard connections. It
operates on the character before and after pro-
cessing by the rotors.

Simply lookup the plugboard pairs to see if
the input character is in any of the pairs. If it
is then substitute the input character for the
other character in the pair.

Example:

Plugboard connections are (AM) (TE)

Input character is a ’T’.

Change it to an ’E’.

Do the following for each of the rotors in rotor
order.

1. Rotate the character by the current ro-
tor position.

2. Shift the input alphabet until the A of
the “Forward” alphabet is aligned with
the current rotor position letter in the
“Backward” alphabet.

3. Translate the input character.

Forward: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Backward: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

Example: First rotor (rotor 3) is B (Align A

with B, shown above). The input character
is E which translates to F (forward). This is
basically a rotate operation on the input char-
acter. (it is being rotated depending on the

current rotor position).

Align the following output table so that the A
in the “Backward” alphabet is below the rotor
ring setting in the “Forward” alphabet.

Forward: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

Backward: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Look up the letter, which corresponds to the
input character in the above table, in the ro-
tor wirings and find its corresponding forward
letter in the above table. The result is the new
input character.

Example: Ring setting for first rotor (rotor 3)
is W. Aligning the letter A in the “Backward”
alphabet with rotor ring setting W in the “For-
ward” alphabet, the letter corresponding to
the input character F is J (forward). The ro-
tor wiring for input J gives output T. The let-
ter corresponding to T in the above table is P
(backward). Input character becomes P.

Rotate the character back by the current rotor
position. We are reversing the rotation made
before the rotor wiring lookup, which is why
it is rotated backwards. The table to rotate
it forward is used to translate the input char-
acter, by looking up the input character the
table backwards.

Example: First rotor (rotor 3) is B (A aligned
with B). The input character is P which trans-
lates to O (backward).

Repeat this process for the next rotor. When
processed with the three rotors, translate the

18 Computer Supplement 20

input character through the reflecting rotor.
This is a simple lookup.

Example: By this stage, the input character
would be an M. The reflecting rotor translates
this into a O.

Now the input character is processed by the
rotors in reverse order. This is exactly the
same as when processed by the rotors as
before, except that the lookup in the rotor
wirings is reversed. The rotor order is also
reversed.

Example: The input character O is passed back
to the third rotor (rotor 2) and goes on to the
second rotor (rotor 1) and first rotor (rotor 3)
before being modified by the patchpanel. The
output from the patchpanel is the final result.

The input to the last rotor (rotor 3) should
be G. This is rotated to the letter H. Align the
A in the “Backward” alphabet with the rotor

ring setting in the “Forward” alphabet. (Ro-
tor ring setting is W). In the “Forward” alpha-
bet, the character corresponding to the input
character H is L. The character corresponding
to the letter L in the rotor wirings (reverse
lookup) is F. In the “Backward” alphabet, the
character corresponding to the input charac-
ter F is B. The B is rotated back to A. Output
is A.

The patchpanel operates on the output from
the reversed rotors. Once again, this is simply
exchanging of letter pairs if the letter is one of
a pair on the plugboard.

Example: Input character is A. Plug (AM)
changes this into an M.

The output from the patchpanel is the final,
enciphered, letter. Carry on enciphering mes-
sage, one letter at a time.

Example: Enciphering THISISATEST using the
settings described at the start.

Input P 3 1 2 R 2 1 3 P Output

T E [FJTPO][KNWTX][BIXQM] (MO) [SZSLH][DGFCG][HLFBA] A M

H H [JNNJH][DGDAE][IPCVR] (RB) [FMOHD][ZCYVZ][BFCYW] W W

I I [LPEAX][TWBYC][GNTMI] (IP) [TAATP][LOMJN][QUWSP] P P

S S [WABXT][PSSPT][XESLH] (HD) [HOYRN][JMCZD][HLFBX] X X

I I [NRWSN][JMOLP][TAATP] (PI) [MTNGC][YBWTX][CGSOJ] J J

S S [YCFBV][RUAXB][FMWPL] (LG) [KRGZV][RUROS][YCGCW] W W

A M [TXSOH][DGDAE][IPCVR] (RB) [FMOHD][ZCYVZ][GKUQJ] J J

T E [MQIEW][SVIFJ][NUPIE] (EQ) [UBJCY][UXQNR][ZDBXP] P P

E T [CGCYP][LOYVZ][DKLEA] (AY) [CJBUQ][MPTQU][DHDZQ] Q Q

S S [CGCYO][KNWTX][BIXQM] (MO) [SZSLH][DGFCG][QUWSI] I I

T E [PTAWL][HKNKO][SZEXT] (TZ) [DKDWS][ORXUY][JNNJY] Y Y

Autumn 1995 19

WOPADIMA
XERXES III

WOPADIMA General Description

The WOPADIMA system is a system of com-
puter programs for WOrd PAttern DIctionary
MAintenance. It runs on IBM and compatible
computers using the DOS operating system. It
can create and update a set of computer files
of word patterns. It can also make files in a
format that is ready for computer listing to
produce a notebook version of the computer’s
file of word patterns. The system does not
include any provision for deleting unwanted
records from the files. It was assumed that
the user would have some kind of editor pro-
gram, such as KEDIT, to view the files and
extract records from the files. That editor can
also be used to delete records from the files.

The WOPADIMA system can handle words
up to 24 letters long. The word pattern
records for each word length are kept in sepa-
rate files. The system will handle words con-
taining apostrophies and treats the apostro-
phy the same as a letter. No other punc-
tuation marks are recognized by the system.
Words with apostrophies and words of the
same length without apostrophies are kept in
separate files.

Words may be input into the system from any
machine readable source that contains words
in ASCII. Repetition of words in the input
and inclusion of words that are already in the
system’s files are no problem. The system
takes these in stride and does not put dupli-
cate records into its files.

The WOPADIMA system consists of seven
programs. Four of these are necessary to cre-
ate and maintain the computer files of word
pattern records. Another one is necessary
to produce the notebook version of the com-
puter’s word pattern files. The other two are
convenience programs that are never necessary
but might be wanted occasionally.

All input to the system is processed by
GENWDINP (GENeral WorD INPut). The input

must be in ASCII form and may be in any di-
rectory. The user designates the name of the
input file including the path if the file is not in
the default directory. The user may enter any
valid name for the output file including the
path if that file is not in the default directory.
If the designated output file does not exist it
will be created. If it does exist the generated
output will be concatenated onto it.

Each word in the input file will be analyzed in-
dividually and will create a record in the out-
put file. The output record will be in the long
format consisting of the word length in a 2-
byte ASCII field, a blank, the word pattern, a
blank, and the word in capital letters. Each
record is delimited by the machine code for
carriage return-line feed (0x0D 0x0A) which
is invisible to the user when viewing the file.
The word hello in any combination of capital
and lower case letters will produce the out-
put record 05 01223 HELLO delimited by the
CrLf.

DIVVYUP takes the output records from
GENWDINP and divides them up into separate
files each containing words of only one length
and all with or all without apostrophies. This
could, conceptually, produce 48 output files
but much smaller numbers are the norm. The
user does not choose the names for the output
files. DIVVYUP places all its output files in the
default directory and names them WORDnn.ACT

or APOSnn.ACT. WORD indicates a file of words
without apostrophies and APOS indicates a file
of words with apostrophies. nn is the ASCII
form of the length of the words in that file and
.ACT designates the file as activity. If any of
these files exist at the time it is called the new
output will be concatenated onto it. The rigid
naming and directory location of the output
files does not decrease the user’s flexibility in
using the system. The program can be invoked
with its path if it is not in the default directory
and the input file name can include the path if
it is not in the default directory. The output

20 Computer Supplement 20

files can be renamed if the assigned names are
not acceptable.

The program will create both a WORD file and
an APOS file for each word length that it pro-
cesses even if there are no records in one
of these files. Output files that contain no
records can be erased.

Output records from DIVVYUP are in the short
format, i.e., the record 05 01223 HELLO in the
input will produce the record 1223 HELLO in
the output file WORD05.ACT. There is no loss of
information because all records in that file are
five letter words and all patterns begin with a
0.

The input file for DIVVYUP may be in any or-
der but the program will run much faster if
all records of one word length are grouped to-
gether. It is customary to sort the input file
into ascending order because the output files
will then be in ascending order (unless they
were concatenated) and they must be in as-
cending order for all subsequent processing.

WHATSNU (WHAT iS New) takes an output
file from DIVVYUP, compares it with the corre-
sponding file in the computer’s word pattern
dictionary, and produces an output file con-
taining only those records that are not already
in the dictionary. Neither input file is altered.
Both input files must be short format records
for the same word length and both must be in
ascending ASCII sort. The output file will not
contain any duplicate records.

The output file from WHATSNU is the shortest
possible list of the activity for that word pat-
tern file. It is the easiest place to do the neces-
sary editing. Words that are not wanted in the
main dictionary, data entry errors, etc. should
be deleted from this activity file before it is
merged into the word pattern dictionary.

MERGWDS (MERGe WorDS) will merge an
edited activity file with a word pattern dic-
tionary file. Both input files must be for the
same word length and both must be in ascend-
ing ASCII order. Neither input file is altered.
MERGWDS will create an output file containing

all of the records in both input files. The out-
put file will be in ascending order. The des-
ignated output file must not exist when it is
invoked. The merged output file can be copied
into the word pattern dictionary, which will
replace the former dictionary file, after it has
been accepted. That completes updating the
word pattern dictionary in its computer file
form.

PRNTDWBU (PRiNT Dictionary With Back Up)
will read a word pattern dictionary file and
create two output files in notebook format.
One file contains the odd numbered pages
and the other one contains the even numbered
pages. This simplifies the task of printing the
notebook pages on both sides of the sheets.
The input file must be in the short format and
must contain records of only one word length
in ascending order. The user can choose any
path and filename for the output files butmust
not/ include an extension. PRNTDWBU adds the
extension .ODD to the file of odd numbered
pages and .EVE to the file of even numbered
pages. The output file with the extension .ODD

is copied to the printer first. The paper is then
removed from the printer and reloaded so that
the first page to be printed is the back of page
1, the next the back of page 3, etc. The out-
put file with the extension .EVE is then copied
to the printer.

These five programs are all that are neces-
sary in the WOPADIMA system. WHATSNU

and MERGWDS each eliminate duplications in
the records so it is never necessary to elimi-
nate them any other way. However, some users
might want to eliminate duplication from their
activity files. Two programs are included to do
that. Both programs require the input files to
contain records of only one word length sorted
in ascending order. Both programs do not al-
ter the input file but do create an output file
in the same format as the input but without
duplications.

NOSHDUPS (NO SHort DUPlicateS) works for
the short format files that are used everywhere
after DIVVYUP. These files already contain only

Autumn 1995 21

one word length so the only requirement is
that the file be in the proper sort.

NOLODUPS (NO LOng DUPlicateS) works for
the long format files that exist between
GENWDINP and DIVVYUP but the output file
from GENWDINP nearly always contains words
of more than one length. Single word length
files would have to be extracted from the
mixed word length file before NOLODUPS could
be used.

The word pattern dictionary files in computer
format are the main repository for the word
patterns. They are also the source of word
pattern information when a person is using
the computer as an aid for manual solution
of aristocrat cryptograms. Those files always
contain the most complete and up-to-date in-
formation. Most users will sometimes work
at cryptogram solution using a totally man-
ual approach without the computer’s help.
The printed notebook form of the files serves
this purpose. The printed notebook is usu-
ally not complete and up-to-date because it is
not reprinted every time the computer files are
updated.

The WOPADIMA system was written in As-
sembler and assembled with MASM4 for use
on IBM and compatible computers using the
DOS operating system.

The system will allow the user to:

1. Create a set of word pattern dictionary
files.

2. Add new words to an existing dictionary.

3. Print any file(s) in the dictionary in
notebook format printing on both sides
of the pages.

The system will handle words up to 24 let-
ters long. It does not recognize any punctu-
ation except apostrophies. Words that have
apostrophies are kept in a separate set of files

from the words that do not. The apostrophe is
counted and treated the same as a letter. The
system treats as a word any collection of let-
ters and apostrophies that occur between two
characters that are neither letters nor apostro-
phies. It does not test the “word” for valid-
ity but it does make provision for the user to
screen the input lists before they are merged
into the dictionary.

The system does not, at present, provide any
assistance in applying the dictionary to the so-
lution of cryptograms.

Machine readable copies of the system are
available to any ACA members who want
them. I ask those people who want it on 3
1/2” disks to send me a blank HD disk or
85 cents. (Anyone requiring DD disks should
send 2 blank DD’s.) Anyone who is willing to
accept it on 5 1/4” disks only needs to tell me
that he wants it because I have a surplus of
those disks. (If they do not tell me otherwise
I will assume that they can use either DD or
HD disks.)

The disks will contain the following files.

1. A description of the system.

2. A tutorial covering the use of the system.

3. The programs in .EXE form.

4. The source code (.ASM form) for the pro-
grams.

5. A recent copy of my word pattern dic-
tionary.

6. A short discussion on using the word
pattern dictionary.

XERXES III

Harold X. Brown

PO Box 20631

Indianapolis, IN 46220-0631

22 Computer Supplement 20

SOME CLASSICAL CIPHERS
Sherry Mayo

The Caesar Cipher

This is an extremely simple cipher which is at-
tributed to Caesar. It is a substitution cipher,

where each letter of the alphabet is replaced
by another letter of the alphabet as follows:

plaintext alphabet: a b c d e f g h i j k l m n o p q r s t u v w x y z

ciphertext alphabet: d e f g h i j k l m n o p q r s t u v w x y z a b c

It is clear from the table above that each let-
ter has been replaced by the letter three places
further along in the alphabet. At the end of
the alphabet we just go back to the start, thus
x is replaced by a, y by b, and z by c.

Although the relative shift between the plain-
text and ciphertext alphabets in the example
above is 3, it could be any number between 1
and 25. The shift number (i.e. 3 in this case)
is the key to the cipher.

Using the substitution above, the plain-
text message london calling moscow is en-
ciphered as follows: (It is customary to omit
the spaces in ciphertext.)

plaintext: london calling moscow

ciphertext: orqgrqfdooljprvfrz

To convert the encrypted message back to
plaintext, simply reverse the encryption pro-
cess. If the key, n, is known (3 in this case)

simply replace each letter with the letter n
places before it in the alphabet.

Weaknesses

Even if the key is unknown, it is not hard to
decrypt a message encrypted using the caesar
cipher. The simplest technique would be to
try all 25 possible replacement alphabets until
the resulting decrypted message made sense.

Frequency analysis of letter occurences could
also be used to find the key. The most fre-
quently occurring letter is likely to correspond
to e, which is the most frequently occurring
letter in the english language (provided the
original message was in english!). Thus if r
is the most frequent letter in the ciphertext
then the key is likely to be 13. Note that fre-
quency analysis needs a reasonable amount of
ciphertext to be at all reliable.

The Augustus Cipher

The cipher is closely related to the Vigenère ci-
pher, and is attributed (possibly erroneously)
to Emperor Augustus. The story goes that
he used a passage from Homer as the key to
encrypt his messages. The key in this case is

equal to the length of the plaintext — you sim-
ply use as much of the key text as is required.

To encrypt the mth letter of the plaintext, se-
lect the mth letter of the key text; the position

Autumn 1995 23

of this letter in the alphabet determines the
shift for the plaintext letter. In other words,
if the mth plaintext letter is o and the mth
key text letter is c, the shift is 3 because c

is the 3rd letter in the alphabet, and thus o

is replaced by the r, which is 3 places further
along in the alphabet. If in shifting a letter
of plaintext you “run out” of alphabet, you

start again at a, e.g. the plaintext letter w en-
crypted by the key letter f (shift = 6) would
result in the ciphertext letter c.

Here is an example of the plaintext London

calling Moscow with urgent message en-
crypted using the words of Hamlet’s famous
soliloquy:

plaintext: l o n d o n c a l l i n g m o s c o

key text: t o b e o r n o t t o b e t h a t i

shift: 20 15 2 5 15 18 14 15 20 20 15 2 5 20 8 1 20 9

ciphertext: f d o i d f q p f f x o l g w t w x

plaintext: w w i t h u r g e n t m e s s a g e

key text: s t h e q u e s t i o n w h e t h e

shift: 19 20 8 5 17 21 5 19 20 9 15 14 23 8 5 20 8 5

ciphertext: p q q y y p w z y w i a b a x u o j

This gives the final ciphertext of:

fdoidfqpffxolgwtwxpqqyypwzywiabaxuoj

The Vigenère tableau can be used to assign
letters as for the Vigenère cipher. the differ-
ence in this case is that the sequence of substi-
tuted alphabets doesn’t repeat but is instead
determined by the keytext.

Deciphering the text is just a matter of re-
versing the process described above using the
same key text. e.g., for the first letter of the
ciphertext shown above, f, the first letter of
the keytext, t determines the shift of 20. This

ciphertext letter is then replaced by the letter
20 places before it in the alphabet, l, and so
on for the rest of the message.

Weaknesses

Since the sequence of alphabets doesn’t re-
peat, frequency analysis cannot be used to
help break this cipher. However, since the key
is a piece of text dictionary type attacks can
be used to find the key word by word. Once
you have a few words you may even be able to
identify the text that was used, thus speeding
up the process.

The Playfair Cipher

The Playfair cipher uses a keyword to scram-
ble an alphabet which is then written into a
5× 5 array (the letters i and j are treated as
the same letter).

For the keyword Inctatus one way of doing

this is as follows

INCTA

USBDE

FGHKL

24 Computer Supplement 20

MOPQR

VWXYZ

Write out the keyword into the array (omitting
duplicated letters) followed by the remaining
letters of the alphabet in order. This is often
given as an example for the Playfair cipher.

The original version was more complicated
starting with a matrix the same width as the
keyword:

INCTAUS

BDEFGHK

LMOPQRV

WXYZ

Then rewriting the columns into rows of a 5×5
matrix:

IBLWN

DMXCE

OYTFP

XAGQU

HRSKV

The message in broken into letter pairs and
these pairs are replaced using the matrix with
the following rules:

• If a pair of letters lie in the same row
they are replaced by the letters on their
right. (EC becomes DE)

• If they lie in the same column they’re
replaced by the letter below (GL ⇒ SX)

• If they’re not in the same row or col-
umn the first cipher letter is found in the
intersection of the row of the 1st letter
with the column of the second, and the
2nd cipher letter is at the inersection of
the row of the 2nd plaintext letter with
the column of the first. (HE ⇒ VD)

(See Brian Beckett’s Introduction to Cryptol-
ogy , page 169.)

Vigenère’s Autokey Ciphers

These ciphers, in which the message acts as
its own key, were developed by Vigenère and
are more complex than the cipher he is usually
credited with.

The idea is to use a seed character to start
the key, and as with an ordinary Vigenère ci-
pher the first plaintext character is replaced
by the character n places along in the alpha-
bet, where n is determined by the seed char-
acter. If the seed is d, the shift is 4 because d
is the 4th letter in the alphabet and the plain-
text character i, for instance, would be re-

placed by m in the ciphertext. Instead of using
a second key character as with the Vigenère
cipher to encrypt the second plaintext letter,
the first plaintext character in use as the key
for the second letter and so on for the rest of
the plaintext.

In short, the first letter is enciphered using the
seed, and each successive plaintext letter is en-
ciphered using the plaintext letter that came
before it. Here is an example with the seed
letter j:

plaintext: l o n d o n c a l l i n g m o s c o w

key text: j l o n d o n c a l l i n g m o s c o

shift: 10 12 15 14 4 15 14 3 1 12 12 9 14 7 13 15 19 3 15

ciphertext: v a c r s c q d m x u w u t b h v r l

Autumn 1995 25

All that is needed to decode the text is the
seed letter. Shifting the first ciphertext letter
back the number of places in the alphabet cor-

responding to the seed reveals the first plain-
text letter, which is then used to decipher the
second ciphertext letter and so on.

One Time Pad (Vernam cipher)

The One Time Pad (OTP) or Vernam cipher is
a mathematically unbreakable cipher although
it is not commercially practical. It simply
exclusive-or’s (XOR, denoted by ⊕) the char-
acters of the plaintext with the characters of
a randomly generated key of the same length
as the plaintext.

Conventionally the plaintext is represented in
binary form. The usual means is to represent
each letter of the alphabet by a number and to
write the number as a binary (base 2) number
with a fixed number of digits. The letters in
the alphabet can be represented by the num-
bers between 0 and 25 which can all be written
as 5 digit binary numbers, e.g.:

A B C D E

00000 00001 00010 00011 00100

F G H I J

00101 00110 00111 01000 01001

and so on up to z which is represented by
11001.

The next stage is to generate a key which is
a random series of 1’s and 0’s with the same
number of digits as the message. The message

(plaintext) is then XORed with the key to pro-
duce the ciphertext. XOR is a logic operation
applied to the nth digit of the plaintext and
the nth digit of the key to produce the nth
digit of the cipher text. The XOR rule is laid
out in the following table:

P ⊕K ⇒ C

0⊕ 0 = 0

0⊕ 1 = 1

1⊕ 0 = 1

1⊕ 1 = 0

where

P = plaintext digit

K = key

C = ciphertext digit

i.e. if the two P and K digits are the same
they XOR to give 0 and if they are different
they XOR to give 1.

Provided the key generation is truly random
all possible ciphertexts are equally likely. A
corollary of this is that for a given ciphertext
all possible plaintexts are equally likely and
thus if you don’t know the key the code is un-
breakable.

L O N D O N C A L L I N G

Text: 01011 01110 01101 00011 01110 01101 00010 00000 01011 01011 01000 01101 00110

Key: 01001 10010 11101 01110 00100 01010 00110 01001 10110 11101 00010 01011 01001

Cipher: 00010 11100 10000 01101 01010 00111 00100 01001 11101 10110 01010 00110 01111

Cipher string: 00010111001000001101010100011100100010011110110110010100011001111

26 Computer Supplement 20

To decode, simply XOR the key with the ci-
phertext to produce the plaintext (examining
the above example will show that this works).

Random numbers can be generated using a
random number generator program, however
such a program only produces pseudo random
numbers and thus key generated this way are
ultimately vulnerable. To produce a truly ran-
dom key it is better to use a quantum machan-
ical event such as nuclear decay to generate
your 1’s and 0’s - you could use the clicks on a
geiger counter - assigning a 1 for a long gap be-
tween clicks and a 0 for a short gap (choosing
the threshold time length between long and
short to give an equal number of 1’s and 0’s).
This would result in a truly random key and
thus an unbreakable cipher - provided a given
key is only used once.

Weaknesses

If you use the same key twice on two differ-
ent messages you render the messages much
more vulnerable to attack. Your enemy can
XOR the two ciphertexts against one another
to produce a text which is the same as that ob-
tained by XORing the two original plaintext
messages. This is the same as having a copy
of either message encrypted by a non-random
key and reduces the problem to that of break-
ing the Augustus cipher. The math behind
this is illustrated below:

P1 = plaintext 1

P2 = plaintext 2

C1 = ciphertext 1

C2 = ciphertext 2

K = key

⊕ = XOR operation

Exclusive-or is associative and commutative,
therefore:

A⊕B = B ⊕A

(A⊕B)⊕ C = A⊕ (B ⊕ C)

= A⊕B ⊕ C

A⊕A = 0

A⊕ 0 = A

The two ciphertexts are produced using the
same key:

C1 = P1⊕K

C2 = P2⊕K

Your enemy intercepts the two ciphertexts and
does the following:

C1⊕ C2 = (P1⊕K)⊕ (P2⊕K)

because XOR is associative,

= P1⊕K ⊕ P2⊕K

because XOR is commutative,

= P1⊕ P2⊕ (K ⊕K)

because A⊕A = 0,

= P1⊕ P2⊕ 0

because A⊕ 0 = A,

= P1⊕ P2

Since neither P1 nor P2 is random, your en-
emy now has a much simpler problem to solve,
and if they succeed they will not only decode
the messages P1 and P2, but will also have
the key, K, since P1⊕ C1 = K.

Hence this cipher is called the One Time Pad
for a very good reason.

Autumn 1995 27

WHAT THE OTHER GUY IS DOING

LEGRAND (Charles Keane) is learning
MacPearl and is concentrating on solving P’s.
He is looking for members of the Krewe that
are experts at solving P’s who would like to
correspond.

GUNNER (Paul Brothers), is looking
for suggestions and/or recommendations on
learning and improving his proficiency in
Power Basic. He’s using a 486 with DOS 6.2,

Windows, and OS/2.

Robert Rutherford is looking for some de-
tails on BITSIFTER’s CRYPTO. He writes,
“The documentation for the maintenance pro-
gram at step 6 shows FINAL and at step 7
shows ERASE *.JNK. Is FINAL another pro-
gram that is hidden ?” Any members of the
Krewe that are familiar with CRYPTO, please
write or e-mail the Editor.

PLEA FOR ARTICLES

The in-bins are empty! The Computer Supple-
ment is a compilation of articles and programs
sent in by subscribers. Right now, there are
no further articles waiting to be published.

If you’re working on a cipher, write up a short
description and send it in. If you’ve come up
with a great piece of software that helps your
solving, send it in!

NOTES TO AUTHORS

The Computer Supplement is intended as a fo-
rum to publish articles on the cryptographic
applications of computers. We are always
looking for submissions, but we ask potential
authors to bear in mind:

1. Many readers are new to ciphers; please
include a brief description of the cipher
in question.

2. Many readers are new to computers; ex-
plain why you are using a computer as
well as how.

3. Include the output of a typical run. If
possible, build in an example for the
reader to check the operation. Indicate
how long it took to obtain this result.

4. Include a full description of how the pro-
gram works, and back it up with com-
ments in the listing.

5. Include a table of variables, either sepa-
rately or as a part of the listing.

6. If at all possible, please submit every-
thing in electronic form, either on a disk
(any IBM format) or uploaded to the
ACA BBS. This makes it much easier
for us to typeset.

7. Send material for publication to Dan
Veeneman, PO Box 2442, Columbia,
Maryland, 21045–2442, USA.

28 Computer Supplement 20

THE MATHEMATICAL GUTS OF RSA ENCRYPTION
Francis Litterio

Here’s the relatively easy to understand math
behind RSA public key encryption. It is most
ironic that it is not illegal to transport this
mathematical description out of the U.S. and
Canada, but it is illegal to export an im-
plementation of this cipher from the U.S. or
Canada. Any competent programmer could
use this knowledge to implement a strong
crypto product beyond the borders of the U.S.
and Canada.

Directions

1. Find P and Q, two large (e.g., 1024-bit)
prime numbers.

2. Choose E such that E and (P−1)(Q−1)
are relatively prime, which means they
have no prime factors in common. E
does not have to be prime, but it must
be odd. (P − 1)(Q − 1) can’t be prime
because it’s an even number.

3. Compute D such that (DE−1) is evenly
divisible by (P − 1)(Q− 1). Mathemati-
cians write this as

DE = 1 mod (P − 1)(Q− 1)

and they call D the multiplicative in-
verse of E.

Definitions

• The encryption function is

encrypt(T) = (TE) mod PQ

where T is the plaintext (a positive in-
teger).

• The decryption function is

decrypt(C) = (CD) mod PQ

where C is the ciphertext (a positive in-
teger).

• Your public key is the pair (PQ,E).

• Your private key is the numberD (reveal
it to no one).

• The product PQ is the modulus.

• E is the public exponent.

• D is the secret exponent.

Notes

You can publish your public key freely, be-
cause there are no known easy methods of
calculating D, P , or Q given only (PQ,E)
(your public key). If P and Q are each 1024
bits long, the sun will burn out before the
most powerful computers presently in exis-
tence can factor your modulus into P and Q,
using presently known factoring algorithms.

Caveats

Given all the hype that RSA is getting these
days, it’s worthwhile to keep the following
caveats in mind.

• It is not yet rigorously proven that no
easy methods of factoring exist. Im-
provements to factoring algorithms are
being made, as well as speed improve-
ments in computer hardware.

• It is not yet rigorously proven that the
only way to crack RSA is to factor the
modulus.

