
THE CRYPTOGRAM Autumn 1997

COMPUTER

SUPPLEMENT #22

In this issue:

SOLVING CRYPTORYTHMS — PARROT presents a brute force method implemented in
the C language.

LOCATING CRIBS IN PATS — G4EGG has a BASIC program to interactively work out
Patristocrats.

BREAKTHROUGH ’32 — DAEDALUS reports on a solution to a minor problem with C.A.
Deavors ENIGMA.BAS program.

AN INTRODUCTION TO PUBLIC KEY CRYPTOGRAPHY—André Kesteloot walks us
through the basics.

TEA AND SYMPATHY — DAEDALUS reviews The Electronic Alveary, a computerized
aid for wordsmiths.

Plus: News and notes for computerists interested in cryptography, and cryptographers in-
terested in computers.

Published in association with the American Cryptogram Association

INTRODUCTORY MATERIAL

The ACA and Your Computer (1p). Background on the ACA for computerists. (As printed in ACA and
You, 1988 edition; [Also on Issue Disk #11]

Using Your Home Computer (1p). Ciphering at the ACA level with a computer. (As printed in ACA and
You, 1988 edition).

Frequently Asked Questions (approx. 20p) with answers, from the Usenet newsgroup sci.crypt.

REFERENCE MATERIAL

BASICBUGS - Bugs and errors in GW-BASIC (1p). [Also on Issue Disk #11].
BBSFILES - List of filenames and descriptions of cryptographic files available on the ACA BBS (files also
available on disk via mail).

BIBLIOG—A bibliography of computer magazine articles and books dealing with cryptography. (Updated
August 89). [available on Issue Disk #11].

CRYPTOSUB - Complete listing of Cryptographic Substitution Program as published by PHOENIX in
sections in The Cryptogram 1983–1985. (With updates from CS #2,3). [available on Issue Disk #3].

DISKEX - A list of programs and reference data available on disk in various formats (Apple—Atari—
TRS80—Commodore—IBM—Mac). Revised March 1990.

ERRATA sheet and program index for Caxton Foster’s Cryptanalysis for Microcomputers (3p). (Reprint
from CS #5,6,7 and 9) [disk available from TATTERS with revised programs].

BACK ISSUES

$2.50 per copy. All back issues from #1 to #21 are available from the Editor.

ISSUE DISKS AND CD-ROM

$5 per disk; specify issue(s), format and density required. All issues presently fit on two IBM High Density
3.5 inch (1.44M) floppy disks, archived with PKZIP. For other disk formats, ask. Disks contain programs
and data discussed in the issue. Programs are generally BASIC or Pascal, and almost all executables are for
IBM PC–compatible computers. Issue text in LaTEX format is available for issues 16 to current. CD-ROM
in MS-DOS format also available, $45. Contains most ACA-related material. Available from the Editor.

TO OBTAIN THESE MATERIALS

Write to: Or via Electronic Mail:

Dan Veeneman dan@decode.com

PO Box 2442

Columbia, Maryland 21045-1442, USA.

Allow 6–8 weeks for delivery. No charge for hard copies, but contributions to postage appreciated. Disk
charge $5 per disk; specify format and density required. ACA Issue Disks and additional crypto material
resides on Decode, the ACA Bulletin Board system, +1 410 730 6734, available 24 hours a day, 7 days a
week, 300/1200/2400/9600/14400/28800 baud, 8 bits, No Parity, 1 stop bit. All callers welcome.

SUBSCRIPTION

Subscriptions are open to paid-up members of the American Cryptogram Association at the rate of US$2.50
per issue. Contact the Editor for non-member rates. Published three times a year or as submitted ma-
terial warrants. Write to Dan Veeneman, PO Box 2442, Columbia, MD, 21045-2442, USA. Make checks
payable to Dan Veeneman.

CHECK YOUR SUBSCRIPTION EXPIRATION by looking at the Last Issue = number on your
address label. You have paid for issues up to and including this number.

1

From the Keyboard
Dan Veeneman

First, an apology for the extremely long de-
lay since the last issue, and thanks for your
patience. The contents of the Computer Sup-
plement are primarily from contributions by
the Krewe, and things have been sparse for a
while, which is curious since encryption has
become very topical lately.

The explosion of the Internet and the de-
sire for secure electronic commerce is driv-
ing the development of protected Web con-
nections and cryptographic payment schemes.
Web browsers developed by Netscape and Mi-
crosoft, to name two, come with such connec-
tion capabilities built-in, and companies like
CyberCash are working to ensure payments
transferred over the Internet are secure and
reliable. The Internet also allows the dissemi-
nation of information regarding product weak-
nesses as programmers and hackers report the
results of their poking and probing. Currently
Microsoft Windows NT and Cisco routers are
getting a closer examination than their cre-
ators would like.

The Internet has also made possible the brute
force solution to difficult cryptographic chal-
lenges by distributing the processing load
across thousands of volunteered machines.
The keyspace to be searched is broken into
small chunks and dispersed to otherwise idle
machines, allowing selected ciphertext to be
attacked en-masse across the planet. For in-
stance, in June a message encrypted using the
Data Encryption Standard (DES) was cracked
by the coordinated efforts of tens of thousands
of machines, each trying a portion of the 72
quadrillion possible keys. Other cryptosys-
tems using relatively short keys are also vul-
nerable to this type of attack.

Here in the United States the development
and use of cryptography has been brought into

question by the Director of the Federal Bu-
reau of Investigation. Historically, export of
strong codes has been regulated by the fed-
eral government, but domestic use was left
unhindered. At a Senate subcommittee hear-
ing in September FBI Director Louis Freeh
called for limits on the domestic use of cryp-
tography and wanted a legal requirement for
every cryptographic package developed, sold,
and used within the United States to contain a
“backdoor” that would allow law enforcement
agents to immediately decrypt any message or
file. More frightening was the warm recep-
tion this Orwellian plan received from some
Senators, and the Secure Public Networks Act
authored by John McCain (R-AZ) and Bob
Kerrey (D-NE) that would implement such a
plan.

On a more positive note, Eric Blossom is now
marketing to the public a secure telephone
that uses triple-DES encryption and Diffie-
Hellman key exchange. Researchers at Silicon
Graphics, Inc. are using Lava Lamps to gener-
ate cryptographically secure random numbers.

This issue contains a variety of articles gath-
ered over the past year or so. By all means, if
there’s something you’re working on and you’d
like to let others know about it, write it up and
send it in ! It doesn’t have to be long and in-
volved, sometimes a short note for inclusion in
“What the Other Guy is Doing” is enough to
motivate others to action or garner additional
help for your project.

Again, I apologize for the long delay between
issues. Thank you for your patience, and
please send in those articles!

Good Solving,

2 Computer Supplement 22

Solving Cryptorythms — A Brute Force Approach
PARROT

Trying every number one by one is a perfect
job for an idiot, yes a computer. Consider CM
JF95 C-SP-1 by HANO. The problem reads:

Square roots. EAGRFMRDA
gives root DEGUA. DEGUA gives
root AUS. AUS gives root (GG-
ID). There are only 6 different dig-
its we need to keep track if we use:
(AUS)*(AUS)=DEGUA.

I use Turbo C version 2.0, but I think this pro-
gram should work on most versions of C with
only minor modifications. It is important to
use (long int) because (int) is only defined
up to 32,768.

The crux of this program is that you assign
each letter of the cryptarythm a variable, and
the computer tries each number one a time
and compares it according a given condition.
That condition is the if statement.

/* cry1.c */

#include <stdio.h>

#include <conio.h>

main()

{

long int d,e,g,u,a,s;

clrscr();

for (d=1;d<10;d++){

for (e=1;e<10;e++){

for (g=1;g<10;g++){

for (u =0;u<10;u++){

for (s=0;s<10;s++){

for (a=1;a<10;a++){

if(a*100+u*10+s)*(a*100+u*10+s)= = (d*10000+e*1000+g*100+u*10+a))

{

printf("d=%ld e=%ld g=%ld u=%ld s=%ld a=%ld\n",d,e,g,u,s,a);

} } } } } } } }

The output was: d=1 e=0 g=2 u=0 s=1 a=1

d=2 e=8 g=5 u=6 s=9 a=1

The first answer comes from the multiplica-
tion by zeros. The second output translates
to 169x169 = 28561. That makes EAGRFMRDA
= 815, 730, 721 according to my calculator,
and the rest is easy.

This problem was nice because I could iso-
late six digits with a mathematical expression

to give me a result. Sure I could run ten
for() loops on any cryptorythm and wait a
few hours (many hours) for a result. But my
XT has better things to do and there are ways
to speed things up.

But when you look at CM JF95 C-10 by
ZIP, there is no way to avoid looking at
all ten digits. The problem is: Subtractions
BROOK-TROUT=GAAEA, HOOK-TORE=UAGO. Here
is the listing of the C program that breaks it.

Autumn 1997 3

/* cry2.c */

#include <stdio.h>

#include <conio.h>

main()

{

long int h,o,k,t,r,e,u,a,g,b;

int c1,c2,c3,c4;

clrscr();

/* part 1 */

for (h=0;h<10;h++){

for (k=0;k<10;k++){

for (t=0;t<10;t++){

for (b=0;b<10;b++){

for (r=0;r<10;r++){

for (e=0;e<10;e++){

/* part 2 */

c1=0;c2=0;c3=0;

o=k-e; if(o<0) {o=o+10; c1=1;}

g=o-r-c1; if(g<0) {g=g+10; c2=1;}

a=o-o-c2; if(a<0) {a=a+10; c3=1;}

u=h-t-c3; if(u<0) u=a+10;

/* part 3 */

if((b*10000+r*1000+o*100+o*10+k)-(t*10000+r*1000+o*100+u*10+t)

= =(g*10000+a*1000+a*100+e*10+a)){

if((h*1000+o*100+o*10+k)-(t*1000+o*100+r*10+e)

= =(u*1000+a*100+g*10+o)){

/* part 4 */

if(h!=o && o!=k && k!=t && t!=r && r!=e && e!=u && u!=a && a!=g && g!=b

&& h!=k && o!=t && k!=r && t!=e && r!=u && e!=a && u!=g && a!=b

&& h!=t && o!=r && k!=e && t!=u && r!=a && e!=g && u!=b

&& h!=r && o!=e && k!=u && t!=a && r!=g && e!=b

&& h!=e && o!=u && k!=a && t!=g && r!=b

&& h!=u && o!=a && k!=g && t!=b

&& h!=a && o!=g && k!=b

&& h!=g && o!=b

&& h!=b){

/* part 5 */

printf("%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",h,o,k,t,r,e,u,a,g,b);

} } } } } } } } } }

The output was: 5 2 0 1 7 8 3 9 4 6,
which corresponds to the variables at the end
of the printf statement. I could have put
identifiers on the output, like the previous pro-

gram. This program has six for() loops and
four expressions I was able to use to speed
things up.

4 Computer Supplement 22

HOOK

-TORE

UAGO

part 2: o=k-e; if(o<0) o=o+10; c1=1;

This line comes from the right side of the
above equation. c1 becomes one if it is neces-
sary to “borrow” from the tens column. Thus
if E was greater than K, c1 will subtract a 1
from the next expression: g = o - r - c1;

if(g<0) g=g+10; c2=1; and c2 will act the
same as c1.

Using expressions greatly speed up the pro-
gram, because the more for() loops in part
1, the slower it will take to get an answer.
My XT will takes 12 minutes to run six for()

loops. Seven for loops should take 10 times
longer or 120 minutes, or two hours. Eight
for() loops. . . 20 hours. And nine would take
days. Yes, a faster way is called for.

Part 4 simply insures that no result will print
out if one variable is equal to another. I usu-
ally run the program without this part, and
include it only if there is a need to limit the
amount of output. Often, if only ten lines or
so are printed out, I can weed out the wrongs
ones by sight.

Part 3 is the problem as given in the Cryp-
togram. The result will only print out if the
if() expression is true. The two sides of the
equations are separated by the logical == dou-
ble equal sign. In C, you need a double equal
sign in a logical expression, and a single equal
sign if you are assigning a value to a variable.

The last example is from CM JF95 C-Sp-
2 by ACHAMP. It is unidecimal addition.
BERLIN + GERMANY = TRAILER.

/* cry3.c */

#include <stdio.h>

#include <conio.h>

main()

{

long int b=0,e=0,r=0,l=0,i=0,n=0,g=0,m=0,a=0,y=0,t=0;

int c1;

clrscr();

for (l=0;l<11;l++){

for (i=0;i<11;i++){

for (n=0;n<11;n++){

for (m=0;m<11;m++){

for (a=0;a<11;a++){

for (y=0;y<11;y++){

for (g=1;g<11;g++){

for (b=1;b<11;b++){

c1=0;

r=n+y; if(r>=11) {r=r-11;c1=1;}

e=n+i+c1; if(e>=11) e=e-11;

t=g+1; if(t>=11) t=t-11;

if(b!=e && e!=r && r!=l && l!=i && i!=n && n!=g && g!=m && m!=a && a!=y && y!=t

&& b!=r && e!=l && r!=i && l!=n && i!=g && n!=m && g!=a && m!=y && a!=t

&& b!=l && e!=i && r!=n && l!=g && i!=m && n!=a && g!=y && m!=t

&& b!=i && e!=n && r!=g && l!=m && i!=a && n!=y && g!=t

&& b!=n && e!=g && r!=m && l!=a && i!=y && n!=t

&& b!=g && e!=m && r!=a && l!=y && i!=t

&& b!=m && e!=a && r!=y && l!=t

Autumn 1997 5

&& b!=a && e!=y && r!=t

&& b!=y && e!=t

&& b!=t){

/* part 5 */

if((b*161051+e*14641+r*1331+l*121+i*11+n)+

(g*1771561+e*161051+r*14641+m*1331+a*121+n*11+y)

==(t*1771561+r*161051+a*14641+i*1331+l*121+e*11+r)){

printf("%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld \n",b,e,r,l,i,n,g,m,a,y,t);

} } } } } } } } } } }

The if statement labeled part 5 is why I’m
showing this program. Since it is an unidec-
imal program, I had to convert the numbers
over to base eleven. Thus the tens positions

was multiplied by 11, the 100’s by 11 x 11 or
121 and so on. It works and the output was 5
8 3 6 7 1 9 4 0 2 10.

NOTES TO AUTHORS

The Computer Supplement is intended as a fo-
rum to publish articles on the cryptographic
applications of computers. We are always
looking for submissions, but we ask potential
authors to bear in mind:

1. Many readers are new to ciphers; please
include a brief description of the cipher
in question.

2. Many readers are new to computers; ex-
plain why you are using a computer as
well as how.

3. Include the output of a typical run. If
possible, build in an example for the
reader to check the operation. Indicate
how long it took to obtain this result.

4. Include a full description of how the pro-

gram works, and back it up with com-
ments in the listing.

5. Include a table of variables, either sepa-
rately or as a part of the listing.

6. If at all possible, please submit every-
thing in electronic form, either on a
disk (any IBM format), uploaded to the
ACA BBS, or electronically mailed to
dan@decode.com. This makes it much
easier for us to typeset.

7. For postal items, send material to

Dan Veeneman

PO Box 2442

Columbia, Maryland, 21045-1442

USA.

6 Computer Supplement 22

Cribloc, a programme to help locate cribs in PATs
G4EGG

Solving PATs for me, after a frequency count
and probable vowel check, means locating the
crib or probable word, and then building on
this known information. Both extending par-
tial words and adding to the substitute alpha-
bets are used. Having once missed the correct
fit, I decided to let the computer find them for
me. That’s how this programme started, and
it worked quite well. Then, like Topsy, it just
growed!

Yes, I know. That’s not the way to write
software. But it works this time. It was a
simple step to evaluate or score each fit, and
so consider them in best fit order. The score
was calculated on the basis of letter frequency

expected from crib, and that found in a ci-
phertext fragment (square of difference). This
worked better.

After that, displaying the substitute letters
under the ciphertext to see other full/part
words and vowel grouping helped rule out un-
likely positions. An improvement indeed.

Naturally, being able to add more letters to
this information followed, resulting in the cur-
rent version of the programme. There is a
built in example, so let’s work through it be-
fore describing the routines in the listing.

Running the programme gives the screen:

CRIBLOC, a programme to help locate a crib in a PAT

Enter cypher text, in UPPER CASE, (ENTER for example, ’F’ if data on disc) ?

So, just press ENTER for the example. For
type, enter 1. (or K1, the example is a K1)
ENTER again finds the crib, which is ENERGY.

A row of periods shows that something is go-
ing on, and finally ciphertext and entered data
are shown as:

CRIBLOC, a programme to help locate a crib in a PAT

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

6 5 7 9 2 4 5 12 4 2 4 0 3 1 0 6 0 4 0 2 0 3 9 2 8 1

Total characters 99 Type K1 Crib ENERGY There are 3 fit(s).

Ciphertext is:

RKHYIWFHGRCAKWXWFMDIFWXDBCHPAKHEDGTEBHWMPGDRYWVCYDWFCGPIDBHYHBJTCYPAHWGDIZPCYJ

en e r e e y re n n renergy n e ng

AKHVADVWMHYHRNBDAHCYP

e ene r e n

Positions with best fit of ENERGY:

Order Value Position Sequence

1 7 59 HYHBJT

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Autumn 1997 7

R E G Y N

(Q)uit this crib, (N)ext pos. (R)e try, or (*A)dd a letter

There is a frequency count, reminders of type
and crib, and the number of fits found. In this
case there are three positions where the word
pattern for ENERGY will go. The best one, ie.
that with lowest score, is shown above. It has
a very low score, 7, indicating a good choice,
so lets stay with it. (Order is from best as 1,
up to number found or limit of 18. Value is
score from square of differences.)

The first line of plaintext ends with ...ng

Surely the first guess must be C ciphertext, is
i plaintext?
To enter this, at the prompt type A (or just

ENTER), and then C for ciphertext followed
by I for plaintext (either case). The substi-
tution alphabets for the ciphertext and plain-
text, respectively, are then correctly shown,
as:

CT$ ABCDEFGHIJKLMNOPQRSTUVWXYZ

PT$ ri e g y n

from which it may be deduced that the CT$ =
...HIJ... and PT$ = ...e.g..., needs I ci-
phertext for f plaintext? Again at the prompt,
ENTER, I, f

Screen then shows Ciphertext as:

RKHYIWFHGRCAKWXWFMDIFWXDBCHPAKHEDGTEBHWMPGDRYWVCYDWFCGPIDBHYHBJTCYPAHWGDIZPCYJ

enf e i f rie e y re n in i f renergyin e f ing

AKHVADVWMHYHRNBDAHCYP

e ene r ein

See end of the ciphertext. P ciphertext is s

plaintext?
And just before plaintext word energy, D ci-
phertext gives o plaintext? Entering these val-
ues results in the following screen:

CRIBLOC, a programme to help locate a crib in a PAT

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

6 5 7 9 2 4 5 12 4 2 4 0 3 1 0 6 0 4 0 2 0 3 9 2 8 1

Total characters 99 Type K1 Crib ENERGY There are 3 fit(s).

Ciphertext is:

RKHYIWFHGRCAKWXWFMDIFWXDBCHPAKHEDGTEBHWMPGDRYWVCYDWFCGPIDBHYHBJTCYPAHWGDIZPCYJ

enf e i of ories e o y re s o n ino i sforenergyins e of sing

AKHVADVWMHYHRNBDAHCYP

e o ene ro eins

8 Computer Supplement 22

Positions with best fit of ENERGY:

Order Value Position Sequence

1 7 59 HYHBJT

CT$ ABCDEFGHIJKLMNOPQRSTUVWXYZ

PT$ rio efg s y n CT letter D The PT o

(Q)uit this crib, (N)ext pos. (R)e try, or (*A)dd a letter

There are now a number of possibilities. Last
plaintext word protiens? After for energy

comes instead? So we now have:

CRIBLOC, a programme to help locate a crib in a PAT

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

6 5 7 9 2 4 5 12 4 2 4 0 3 1 0 6 0 4 0 2 0 3 9 2 8 1

Total characters 99 Type K1 Crib ENERGY There are 3 fit(s).

Ciphertext is:

RKHYIWFHGRCAKWXWFMDIFWXDBCHPAKHEDGTEBHWMPGDRYWVCYDWFCGPIDBHYHBJTCYPAHWGDIZPCYJ

enfa ed it a a of a oriest e ody rea sdo na inoa idsforenergyinsteadofusing

AKHVADVWMHYHRNBDAHCYP

t e to a ene proteins

Positions with best fit of ENERGY:

Order Value Position Sequence

1 7 59 HYHBJT

CT$ ABCDEFGHIJKLMNOPQRSTUVWXYZ

PT$ trio defg p s y a nu CT letter G The PT D

(Q)uit this crib, (N)ext pos. (R)e try, or (*A)dd a letter

The addition of h, w, c, l, k and b now follow, giving the solution:

CRIBLOC, a programme to help locate a crib in a PAT

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

6 5 7 9 2 4 5 12 4 2 4 0 3 1 0 6 0 4 0 2 0 3 9 2 8 1

Total characters 99 Type K1 Crib ENERGY There are 3 fit(s).

Ciphertext is:

RKHYIWFHGRCAKWXWFMDIFWXDBCHPAKHEDGTEBHWMPGDRYWVCYDWFCGPIDBHYHBJTCYPAHWGDIZPCYJ

whenfacedwithalackofcaloriesthebodybreaksdownaminoacidsforenergyinsteadofusing

AKHVADVWMHYHRNBDAHCYP

Autumn 1997 9

themtomakenewproteins

Positions with best fit of ENERGY:

Order Value Position Sequence

1 7 59 HYHBJT

CT$ ABCDEFGHIJKLMNOPQRSTUVWXYZ

PT$ triobcdefghjkpqsvwxyzmalnu CT letter O The PT Q

(Q)uit this crib, (N)ext pos. (R)e try, or (*A)dd a letter

The prompt line allows:
Q to get back to base, run again, or try another
crib/probable word.
N moves on to the next fit position (not neces-
sary in this example!).
R resets the same crib position, if wrong as-
sumptions are made.
A allows adding new substitute letters.

Now comments on the programme listing:

The programme is written in QuickBasic, but
line numbers have been maintained for users
of other dialects. Some syntax may also need
amendment for other flavours of BASIC, like
the UCASE$(and LCASE$(functions, and the
IF, THEN, ELSE, and END IF construct. Each
section of the programme starts with a line
numbered nnn9 , (which may be omitted), in-
dicating what that part does.

The programme can be useful with K3 and K4
types, but adding letters to plaintext alphabet
is less reliable. As with all my programmes, if
on disc the ciphertext is in a file with exten-
sion .CT$ Line 1540 limits the fits tried to 18,
even if more are found. It can be increased if
required. In use, the highest number actually
needed has been 11. Finally, when finished, I
call my MENU programme. Line 2400 will need
amending to your own exit method.

Duplicate use of letters is not checked. But
entering a second substitution overwrites the
earlier one, and R at prompt allows a fresh
start with same crib location. Use is suggested
for PAT’s numbered 4 or 5 to about 10. With
luck, even P-11 and P-12! The programme has
been used successfully with simple XENO’s,
but the scoring of best fits is not accurate.
Try more of them!

99 ’ A PROG. TO HELP LOCATE A CRIB IN A PAT. v 4.1

100 ’ Set up variables, etc.

110 COLOR 4, 7: AB$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ": BA$ = SPACE$(26)

120 DIM F(26), A(26), B(20), R(20), T(255), Z(20)

130 CX$ = "RKHYIWFHGRCAKWXWFMDIFWXDBCHPAKHEDGTEBHWMPGDRYWVCYDWFCGPIDBHYHBJTCYPAHWGDIZ

PCYJAKHVADVWMHYHRNBDAHCYP"

140 HD$ = SPACE$(17) + "CRIBLOC, a programme to help locate a crib in a PAT" + CHR$(13)

150 BX$ = "ENERGY" ’ PT begins "INSPIRATION FOR CONS"

’NEXT’ is last word, 11th fit.

160 K2$ = " PT$ ": K1$ = " CT$ ": S$ = "ETAONIRSHLDCUPFMWYBGVKQXJZ"

170 F$ = " 13 9 8 8 7 7 7 6 6 4 4 3 3 3 3 2 2 2 1 1 1 0 0 0 0 0 ": GOTO 600

389 ’ The subs start here

10 Computer Supplement 22

399 ’ Make pattern of crib/crib length fragment of CT

400 J = 1: TT$ = SPACE$(C)

410 FOR K = 1 TO C - 1: K$ = RIGHT$(STR$(K), 1): A$ = MID$(CP$, K, 1)

420 IF INSTR(D$, A$) THEN 460

430 A = INSTR(J + K, CP$, A$): IF A = 0 THEN GOTO 460

440 MID$(TT$, K, 1) = K$: MID$(TT$, A, 1) = K$: J = A: D$ = D$ + A$

450 IF A + 1 < C THEN 430

460 J = 1

470 NEXT: PRINT "."; : D$ = ""

480 RETURN

599 ’ Prog. starts here!

600 CLS : PRINT HD$ ’ Get CT and type (K1 or K2)

610 PRINT " Enter cypher text, in UPPER CASE, (ENTER for example, ’F’ if data on disc)"

620 INPUT CT$: CT$ = UCASE$(CT$): IF CT$ = "" THEN CT$ = CX$: GOTO 670

630 IF CT$ <> "F" THEN 670

640 PRINT : INPUT "Name of file holding data "; N$: I = INSTR(N$, ".")

650 IF I > 0 THEN N$ = LEFT$(N$, I - 1)

660 N$ = N$ + ".CT$": OPEN "I", #1, N$: INPUT #1, CT$: CLOSE #1

670 I = INSTR(CT$, " ")

:IF I > 0 THEN CT$ = LEFT$(CT$, I - 1) + MID$(CT$, I + 1): GOTO 670

680 PRINT : PRINT CT$: PRINT : INPUT " Type K(1) or K(*2) ", TP$

690 IF INSTR(TP$, "1") THEN TP$ = "K1": SWAP K1$, K2$ ELSE TP$ = "K2"

799 ’ Calc freq. dist of CT

800 L = LEN(CT$): PT$ = SPACE$(L)

810 FOR I = 1 TO L

820 N = ASC(MID$(CT$, I, 1)) - 64: F(N) = F(N) + 1: A(N) = A(N) + 100 / L

830 NEXT

899 ’ Display CT and freq. dist

900 CLS : PRINT HD$: PRINT " A B C D E F G H I J K L M N O P Q R

S T U V W X Y Z"

910 FOR TT = 1 TO 26: PRINT USING "###"; F(TT); : NEXT: PRINT

920 PRINT " Total characters"; L; "Type "; TP$: PRINT

: PRINT "Ciphertext is:": CL2 = CSRLIN

930 IF L > 78 THEN PRINT LEFT$(CT$, 78) ELSE PRINT CT$: GOTO 1000

940 PRINT : PRINT : PRINT MID$(CT$, 79)

999 ’ Get crib

1000 PRINT : PRINT : CL = CSRLIN

1010 LINE INPUT " Enter crib: "; CB$: CB$ = UCASE$(CB$)

1020 C = LEN(CB$): IF C < 2 THEN CB$ = BX$: C = LEN(CB$)

1030 LOCATE 5, 34: PRINT "Crib "; CB$

1040 LOCATE CL, 15: PRINT CB$;

1099 ’ Check letters in crib, & find freq. of ’em. DD shows up patt. words

1100 FOR I = 1 TO C: A$ = MID$(CB$, I, 1): A = INSTR(S$, A$)

1110 IF A = 0 THEN PRINT A$; " NOT FOUND IN S$": STOP

1120 B(I) = VAL(MID$(F$, A * 2, 2))

1130 A = INSTR(I + 1, CB$, A$): IF A > 0 THEN DD = DD + 1

1140 NEXT

1150 IF DD > 0 THEN ’ If crib is pattern word,

Autumn 1997 11

1160 CP$ = CB$: GOSUB 400

1170 TC$ = TT$

1180 ELSE ’ and if not,

1190 TC$ = SPACE$(C)

1200 END IF

1299 ’ step through CT$ for self subst. and pattern mis-match

1300 FOR I = 1 TO L - C + 1: CP$ = MID$(CT$, I, C)

1310 FOR U = 1 TO C ’ Kill self substitution

1320 IF MID$(CB$, U, 1) = MID$(CP$, U, 1) THEN T(I) = 999: U = 99

1330 NEXT U: IF U > 90 THEN GOTO 1530

1399 ’ patterns match?

1400 GOSUB 400: IF TC$ <> TT$ THEN T(I) = 999: GOTO 1530

1499 ’ calc a value of freq dist, CT letters/crib normals

1500 FOR J = 1 TO C

1510 T(I) = T(I) + (A(ASC(MID$(CT$, I + J - 1, 1)) - 64) - B(J)) ^ 2:

1520 NEXT

1530 NEXT I ’ Get value of fit, and count ’em

1540 FOR K = 1 TO 18: H = 999:

1550 FOR I = 1 TO L - C + 1

1560 IF H > T(I) THEN H = T(I): R(K) = I: CC = CC + 1

1570 NEXT: Z(K) = T(R(K)): T(R(K)) = 999: PRINT ",";

1580 NEXT

1590 LOCATE 14, 1: PRINT SPACE$(240)

1600 LOCATE 5, 55: PRINT "There are"; CC; "fit(s). ";

1610 IF CC = 0 THEN PRINT : GOTO 2330

1620 LOCATE 14, 1

1630 PRINT " Positions with best fit of "; CB$; ":"

: PRINT " Order Value Position Sequence"

1640 CL = CSRLIN

1650 FOR I = 1 TO 18

1660 IF R(I) = 0 OR Z(I) = 999 THEN

1670 I = 19: PRINT "No more."

1680 ELSE

1690 BB$ = MID$(CT$, R(I), C)

1700 LOCATE CL, 3: PRINT " ", I, INT(Z(I)), R(I), BB$

1710 FOR J = 1 TO C: K = 1

1720 A$ = MID$(BB$, J, 1)

1730 JJ = INSTR(K, CT$, A$)

1740 IF JJ > 0 THEN K = JJ + 1

: MID$(PT$, JJ, 1) = LCASE$(MID$(CB$, J, 1)): GOTO 1730

1750 NEXT

1760 LOCATE CL2 + 1, 1

1770 IF L > 78 THEN PRINT LEFT$(PT$, 78) ELSE PRINT PT$: GOTO 1790

1780 PRINT : PRINT : PRINT MID$(PT$, 79)

1790 END IF

1899 ’ Put crib into PT$

1900 FOR II = 1 TO C

1910 A1$ = MID$(CB$, II, 1): A2$ = MID$(BB$, II, 1)

1920 IF TP$ = "K1" THEN SWAP A1$, A2$

1930 III = INSTR(AB$, A1$): MID$(BA$, III, 1) = LCASE$(A2$)

12 Computer Supplement 22

1940 NEXT II

1950 LOCATE 18, 1: PRINT " " + AB$: PRINT " " + UCASE$(BA$) + " "

1960 LOCATE 22, 65: PRINT " ": LOCATE 22, 10

2090 INPUT "(Q)uit this crib, (N)ext pos. (R)e try, or (*A)dd a letter ", Z$

2100 IF UCASE$(Z$) = "N" THEN GOTO 2310

2110 IF UCASE$(Z$) = "Q" THEN I = 999: GOTO 2310

2120 IF UCASE$(Z$) = "R" THEN I = I - 1: GOTO 2310

2130 LOCATE 19, 40: PRINT SPACE$(38)

2140 LOCATE 19, 50: INPUT "CT letter ", C$: C$ = UCASE$(C$): IF C$ = "" THEN GOTO 2310

2150 LOCATE 19, 65: INPUT "The PT ", P$: P$ = UCASE$(P$)

2160 IF TP$ = "K2" THEN

2170 AA = ASC(P$) - 64: IF AA < 1 THEN C$ = " "

2180 MID$(BA$, AA, 1) = LCASE$(C$)

2190 LOCATE 18, 1: PRINT K1$ + UCASE$(BA$): PRINT K2$ + LCASE$(AB$) + " "

2200 ELSE

2210 AA = ASC(C$) - 64: IF AA < 1 THEN P$ = " "

2220 MID$(BA$, AA, 1) = LCASE$(P$)

2230 LOCATE 18, 1: PRINT K2$ + UCASE$(AB$): PRINT K1$ + LCASE$(BA$) + " "

2240 END IF

2259 ’Put entered letters into PT and alphabets

2260 IR = 0

2270 A = INSTR(IR + 1, CT$, C$): IF A = 0 THEN GOTO 2290

2280 MID$(PT$, A, 1) = LCASE$(P$): IR = A: GOTO 2270

2290 LOCATE CL2 + 1, 1: IF L > 78 THEN PRINT LEFT$(PT$, 78) ELSE PRINT PT$: GOTO 1960

2300 PRINT : PRINT : PRINT MID$(PT$, 79): GOTO 1960

2310 PT$ = SPACE$(L): BA$ = SPACE$(26)

2320 NEXT

2330 LOCATE 22, 10: PRINT SPACE$(65)

2340 LOCATE 22, 10: INPUT "Back to (M)enu, (R)un again, (F)resh crib"; Z$

: Z$ = UCASE$(Z$)

2350 IF Z$ = "R" THEN RUN

2360 IF Z$ = "F" THEN

2370 DD = 0: CC = 0: FOR I = 1 TO L - C: T(I) = 0: NEXT

2380 FOR I = 1 TO 15: Z(I) = 0: R(I) = 0: NEXT: GOTO 900

2390 END IF

2400 IF Z$ = "M" THEN RUN "MENU.BAS" ELSE GOTO 2330

PGP REMINDER

For those of you wanting to get started with Pretty
Good Privacy (PGP), MCTAYLOR (Michael C.
Taylor) reports that PGP 5.x and PGP 2.6.x may
be found on the Web at:

• non-commerical in US/Canada
http://web.mit.edu/network/pgp.html

• commerical in US/Canada
http://www.pgp.com/

• outside US (but including Canada)
http://www.pgpi.com/

Autumn 1997 13

Shakespeare on the Web
Patrick Leary (RETREAD)

ACA members may be interested in a new crypto
site. Discussed is the authorship of Shakespeare’s
Works which I attribute to Francis Bacon. Among
other things it includes a copy of my book, The
Second Cryptographic Shakespeare, a pamphlet
summary and a BASIC crypto program. The Uni-
form Resource Locator (URL) is:

http://fly.hiwaay.net/~paul/outline.html

Paul Dupuy, who continues work on the page,
found my book in the library and did this on his
own. He is a graduate student in computer science
and later found me on the Internet.

Baltimore Sun series on the NSA
RagyR

On two recent occasions (MA96 Cryptogram and
April 96 Cryptologia) , MEROKE (Louis Kruh)
has reviewed the Baltimore Sun’s reprint of their
series of articles on the National Security Agency.
The series sounded interesting enough that I at-
tempted to obtain copies to make available to the
Krewe at discount. Alas, that will not happen as
the Sun didn’t cooperate. But, I did uncover some
additional information that may be of interest.

The reprint can be ordered from SunSource, the
Sun’s reprint distribution office, by phone at (800)
829-8000, Ext. 6800. Be warned, though, that its
price has gone up to $6.95. This still seems rea-
sonable and I have seen it advertised by another
bookseller for twice that amount.

Also, an excerpt from the series can be found on
the web at:
http://www.sunstore.com/sunsource/

CORRECTION TO QUAG 1&2
Wilfred Higginson

The Quag 1&2 programme in the current issue
contains a bug. Not much, the programme works
O.K., but the number of fits reported after a
change of crib is incorrect. The amendment is just
to add M=0 after the RESTORE in line 2690, so that
it reads :

2960 IF Z$="R"...ELSE RESTORE 2700:M=0:CLS...

Hope that doesn’t cause too much trouble? Also,
there is confusion here between CIPHERTEXT
and CLEARTEXT. Don’t know how that arose,
but no doubt the Krewe will sort it out?

14 Computer Supplement 22

BREAKTHROUGH ’32 - A minor problem solved!
David Hamer (DAEDALUS)

In CS19 the editor relayed my call for assistance
with BREAKTHROUGH ’32; The Polish Solution
of the Enigma. As a result I received the solu-
tion to a minor problem I had encountered with C.
A. Deavours’ ENIGMA.BAS program, from ODAL
and a further communication on the subject from
BINO.

I had begun work on the BREAKTHROUGH ’32
problems a couple of years ago but came to an
abrupt halt on page 13 when the expected FAST

ROTOR STEPS ONLY (Y OR N)? didn’t appear on

schedule. Some time passed and I found myself
back in the United States; the ACA-L mailing list
was established on the Internet and I posted a cry
for help. [Ed: information on the ACA-L list may
be found on page 24. DMV]

I had no response directly but after my request
was repeated in CS19 I got a letter from Heinz
Ulbricht (ODAL) in Braunschweig — who had
encountered the problem earlier — in which he
suggested adding lines 145 and 775 to my copy
of Deavours’ program, thus:

140 MID$(R$(I), Z, 1) = CHR$(J + 64): NEXT J: NEXT I

145 INPUT "FAST ROTOR STEPS ONLY (Y OR N)"; SP$

150 PRINT "ROTOR WIRINGS:"

770 REM MOVE ROTORS

775 IF SP$ = "Y" THEN RP(1) = (RP(1) + 1) MOD 26: P(1) = (P(1) + 1)

MOD 26: P(7) = P(1): RETURN

780 MOVE2 = 0: MOVE3 = 0

This worked fine and I was able to proceed, liter-
ally, ’by-the-book’.

Additional discussion with other readers/users of
the Aegean Park Press text (#51) suggested that
Wayne Barker had included the “shorter” version
of Deavours’ program with some, if not all, copies
of the book. My sampling on this is small, but out
of the four users with whom I corresponded, all had
encountered the same difficulty. A telephone con-
versation with Professor Deavours revealed that
there are several versions of ENIGMA.BAS in cir-
culation. The “normal” version does not contain
the extra lines; presumably because one does not
usually want to prevent the slower rotors from
stepping. Somehow this “normal” version was in-
cluded with BREAKTHROUGH ’32 , rather than
the “special” version required by the exercises. In
fact, the additional lines are included in the ver-
sion of ENIGMA.BAS that Deavours distributed on

request after the publication of The Turing Bombe:
Was it Enough ? in CRYPTOLOGIA, Vol.XIV,
No.4, (1990).

Interestingly, the two versions are date-stamped
only one day apart; 12/03/87 and 12/04/87 !

A caution: Most of the .BAS programs associ-
ated with BREAKTHROUGH ’32 and the CRYP-
TOLOGIA article are not saved in ASCII for-
mat and so cannot be read, compiled or otherwise
manipulated with the MS-QuickBASIC (or simi-
lar) editor/compiler without first being converted.
Conversion to ASCII involves the use of the now-
almost-defunct GW-BASIC/BASICA etc. inter-
preter, first to list the .BAS file and then to save it
with the ,a option.

Moral: Don’t throw out your old “line” BASIC
software !

Autumn 1997 15

WHAT THE OTHER GUY IS DOING

DAEDALUS (David Hamer) has “more-or-less”
retired from his aviation career but keeps his hand
in by occasionally piloting a business jet for a small
company based in his home state of New Jersey.
He has resumed his interest in things mathemat-
ical and is involved in the development and mar-
keting of computer software related, primarily, to
system security. He also teaches, on a part-time
basis, at a local college where he is striving, with
questionable effect, to stay one step ahead of his
students in calculus !

CERE E. US (Ed Magelky) has been working
in the C language, and in working on “recursive
reduction” has invented several techniques and al-
gorithms to greatly speed up the reduction process.

LANAKI (Randall K. Nichols) has a two volumes
of cryptographic material available from RAGYR’s
Classical Crypto Books and from Aegean Park
Press. Volumes I and II of Nichols’ Classical Cryp-
tography Course are the summation of a electronic-
mail course given to more than 450 students by Mr.
Nichols.

LANAKI also reports that he has accepted a
position as Technology Director — Cryptography
for the National Computer Security Association
(NCSA) in Carlisle, Pennsylvania. He will be in
charge of both the Cryptography Lab and staff
as well as the Commercial Certification process
for Cryptography Products Consortium members
(CPC) from both United States and Europe. In
his spare time, LANAKI will continue to edit the
ARISTOCRATS column for ACA and complete
his Advanced Cryptography and Commercial Com-
puter Security text for McGraw-Hill.

Also, for ENIGMA buffs, LANAKI suggests
http://www.enigma-co.com/resource.html

SI SI (Clayton Pierce) has assembled a 28 page
monograph entitled Hobby Cryptography For Clas-
sical Ciphers, to serve as a replacement for the
cryptography in chapter eight of the classic ACA
& YOU.

John K. Taber reports that the NSA has
declassified reams of cryptographic stuff under
their “Opendoor” program. An index of re-
leased material is available on the NSA web site,
http://www.nsa.gov:8080/programs/opendoor/

Apparently, you should search the index for items
you are interested in, then go to National Archives
and Records Administration (NARA) for the doc-
ument(s). Has anyone done this?

MCTAYLOR (Michael C. Taylor) asks: Has any-
one been able to duplicate some of the the docu-
ments available via OpenDoor? In particular the
Zimmerman Telegram, Turing’s treatise on the En-
gima, anything specific to analysis of ciphers and
codes, and my personal interest, Canadian refer-
ences.

Being outside USA, and in particular not near
Maryland, it is little more difficult for me to check
it out myself. I am uncertain, but it is possible
that the material may be in the public domain,
as I presume the NSA is considered a US govern-
ment organization. This would facilitate the du-
plication and redistribution of this information to
ACA members.

FUTHARK (Joe Palakanis) is up and running
with DOS 6.22 and QBasic on his 166 MHz Pen-
tium. He reports that QBasic is available on the
Windows 95 CD-ROM distribution, and can be lo-
cated using the “Find” function, at which point it
may be rolled onto the hard drive. For that tip
he thanks new member James A. Parsly, who it
turns out has a program called CRYPTOSOLVE which
does a fair job solving Aristos. It is available at
http://www.public.usit.net/jparsly/.

FUTHARK also notes that Buckmaster Publish-
ing Company at http://www.buck.com/cryp.html
sells a reprint of TM-11-485, Advanced Military
Cryptography , a War Department Technical Man-
ual originally published in 1944, for $19.95.

MEROKE (Louis Kruh) adds: For my review of
Advanced Military Cryptography from Buckmaster
Publishing, see CM, J/A ’93, p. 15.

16 Computer Supplement 22

CLASSICAL CRYPTO BOOKS

If you’ve been looking for a particular book re-
lated to cryptography, or just wanted a “one-stop-
shop”bookstore for your code-breaking hobby,
get in touch with RAGYR (Gary Rasmussen).
RAGYR has a list of more than 150 titles covering
such topics as SIGINT history, recreations, classi-
cal cryptology, modern and advanced cryptology,
traffic analysis, and various references. He also
carries books on intelligence, foreign language, has
books for beginners, and has a number of fiction
titles.

From his catalog:

Specializing in Traditional Ciphers,
Codes, and Signals Intelligence

Classical Crypto Books was started in
1995 by Gary Rasmussen as a service

for other members of the American
Cryptogram Association. Its objec-
tive is to provide a convenient place
for the Krewe (as ACA members are
known) to obtain new (unused) books
on traditional codes, ciphers, and sig-
nals intelligence at discount prices.
Orders are welcomed from members
and non-members alike. However,
members receive discounts which are
unavailable to non-members.

CLASSICAL CRYPTO BOOKS

PO Box 1013

Londonderry, NH 03053-1013

USA

Send electronic mail inquiries to RagyR@aol.com

CRYPTOSYSTEMS JOURNAL

After more than two years of “spare time” effort,
Tony Patti has produced Volume 4 of his Cryp-
tosystems Journal . This monumental effort, com-
prising almost 300 pages of text and color illustra-
tions, covers a number of software and hardware
issues related to cryptography, as well as book re-
views and sanguine commentary.

One section is dedicated to a discussion of ran-
domness, with a variety of quoted sources and
detailed “hands-on” projects for creating a “ran-
dom” number generator out of digital hardware.
Another section describes the generation of real-
istic 3-D computer graphics and fractal images,
complete with references and illustrations. Other

sections cover software implementations of various
cryptosystems, book reviews, and there’s even a
crossword puzzle!

Tony Patti may be reached at:

485 Middle Holland Road

Holland, Pennsylvania 18966

USA

(215) 579-9888

Tony is also reachable via electronic
mail, crypto@compuserve.com, and has
a World Wide Web page set up at
http://ourworld.compuserve.com/homepages/crypto.

Autumn 1997 17

An Introduction To Public Key Cryptography
André Kesteloot

Anyone who reads the Usenet groups on the Inter-
net from time to time will have noticed that many
postings now include a PGP key. PGP (Pretty
Good Privacy) allies the strength of Public Key
Cryptography (PKC) with the speed of another
encryption algorithm known as IDEA. This article
will attempt to offer an introduction to Public Key
Cryptography, along with a few simple BASIC pro-
grams that can be run on any personal computer
for demonstration purposes.

Background

Transferring information from point A to point
B, while hiding its true meaning, has long been
a cherished human endeavor. Cryptography was
probably created the day after the first alphabet
was invented, and since then, many clever schemes
have been generated, only to be subsequently de-
feated. The traditional methods always relied on
the two parties having a common reference. One
side would encode his or her message, using the
common reference, and forward it to the intended
recipient, who would then somehow look up the
reference, and decode the message. (During the
Civil War, for instance, it was not uncommon for
people to own a Bible, and provided that both par-
ties had agreed in advance to use a given chapter
of a given book of the same edition of the Bible,
then the message could be enciphered using just
the page number, the line number and the posi-
tion of the desired word on that line.)

This being a fairly slow process, better machines
were eventually invented and the introduction of
computers certainly made things go faster, but es-
sentially, it was still the same old problem: how to
generate a better “key” and, equally troublesome,
how to pass it to the intended recipient so that
both the sender and the recipient (and no one else)
have access to it. Traditionally, if Mrs. A wanted
to send a encrypted love letter to Mr. B, but was
being watched 24 hours a day, the perennial prob-
lem was for her to pass the key to Mr. B. They
would have to come in contact at least once (either
face to face, by mail, by phone, etc.) for them to
exchange keys or to agree to some common refer-
ence. Since that exchange can either be observed,
compromised or spoofed, the whole security of the
future epistolary relationship between Mrs. A and
Mr. B resided (a) in the strength of the encryption

algorithm chosen, and (b) in the integrity and/or
secrecy of the key exchange process.

Then came True Change with the introduction of
Public Key Cryptography (I would venture to say
that PKC will be seen, in retrospect, as one of
the most momentous developments in technology
during the past 20 years, not only because of the
radically new approaches it offers to old problems,
but also because of the sheer number of aspects of
our lives it will quietly impact). I won’t go into the
history of PKC (the reader may wish to reference
Contemporary Cryptology , an excellent anthology
published by the IEEE in 1992) but the basic rev-
olutionary idea which came to its creators in 1978
was to challenge the established axiom that the
same key had to be available at both ends for en-
cryption and decryption to be able to take place.
There are many different forms of PKC but the
best known is probably the RSA system, named
after its creators, Rivest, Shamir and Alderman. It
uses one key for encryption (called the Public key
because it can actually be made public) and an-
other (Private or secret) key for decryption. The
concept is based on the use of one-way, or trap-
door, mathematical functions. These functions are
mathematical operations trivial to perform in one
direction, but extremely arduous in the reverse
direction. For instance, to raise 23 to the third
power, i.e. 233, we simply multiply 23 × 23 × 23
and instantly obtain 12167. In the reverse direc-
tion though, extracting the cubic root of 12167 is
not quite so easy !

The old concept of cryptography usually evoked
the idea of conspirators meeting in dark alleys for
nefarious purposes; in fact, every step of the ex-
change was somehow shrouded in secrecy. The new
PKC system changed that too, and even the way
an exchange is described in technical literature was
modified: the token protagonists named in Public
Key Cryptography scientific articles are no longer
faceless entities, but have become plausible human
beings, usually referred to as “Bob” and “Alice”.
Because this is all quite revolutionary, and yet im-
pacts seriously on our everyday life, allow me to de-
scribe, step by, step, a typical PKC transaction. (I
have added Vader-the-Villain, a.k.a. Darth Vader,
as the imperishable enemy, forever trying to in-
tercept and understand the exchange of messages
between Alice and Bob).

18 Computer Supplement 22

The New Process

Let us suppose that Alice wants to send an en-
crypted message to Bob. Bob has a public key
which he has posted at the bottom of his e-mail
messages, his Usenet postings, etc. Alice looks up
Bob’s public key in a publicly available directory.
She uses it to encrypt her message and then posts
this encrypted message in a public place. (This
could be the local newspaper classified ads, or a
banking network. Although the latter is certainly
more private than the former, we will assume that
it could be under attack by rogues, thieves and
assorted cutthroats.) Now Bob retrieves the mes-
sage, and decrypts it using his private (secret) key.
This is the only step in the whole transaction that
needs to be protected and kept confidential. Note
that the public key and the private key are related
to one another but that, if the one-way mathemati-
cal function is properly chosen, the private key can-
not be derived from the public one. (Or, perhaps
more accurately, can only be derived using exor-
bitant amounts of computing power, not usually
available to your everyday villian in a convenient
time frame. Note that if Bob has published sev-
eral public keys, and Alice uses a new key for each
transaction, then Vader-the-Villian is faced with
even more serious problems!)

Key generation

The problem is to generate two keys, one private
and the other, public which are related to, but can-
not easily be derived from, each other. There are
many ways to generate such keys, and here is but
one example.

First select two large prime numbers p and q,
each possibly 100 digits long. Their product,

n = p× q (Eqn. 1)

will be Bob’s 200 digit long public encryption key.
(There are certain restrictions in the choice of ap-
propriate values for p and q, which are beyond the
scope of this overview, and the interested reader
should look up the references listed at the end of
this article). This is the key he will make available
in some public place.

The private or secret decryption key d is now ob-
tained by Bob by calculating

d = [2(p− 1)× (q − 1) + 1]/3 (Eqn. 2)

Remember that the world-at-large, (including Al-
ice and Vader-the-Villain) only knows Bob’s public

key n, but if n is a 200-digit number, it is very dif-
ficult, if not practically impossible to retrieve, with
the sole knowledge of n, the values of the two prime
numbers p and q.

Now to encrypt a message we can, for instance,
take each letter or digit and convert it to its ASCII
equivalent. Several of these ASCII values can now
be grouped and encrypted by cubing them mod-
ulo n. This will be the encrypted group C which
will be transmitted by Alice to Bob. Incidentally,
a modulo operation is performed by dividing the
number in question by the modulus, and posting
only the remainder. Hence 4 × 4 × 4 mod 11 = 9
because 64/11 = 5 with a remainder of 9. Note
that 15 × 15 × 15 mod 11 = 9; 263 mod 11 = 9;
373 mod 11 = 9; 433 mod 11 = 9, etc., which will
make the job of Vader-the-Villain even more diffi-
cult, as the only information Alice sends to Bob is
C, the remainder of the modulo operation.

To decrypt the message C, Bob must know his
public encryption key n and his private/secret de-
cryption key d and must calculate the result of
[Cd mod n]; that is, Bob must raise C to the d
power and then modulo n the result.

An Example

Let us consider a practical example: in the January
1983 issue of Byte Magazine, John Smith published
a very interesting article describing the implemen-
tation of a simplified form of the RSA algorithm.
I have simplified it even further, and will present
now two short BASIC programs you can use to
demonstrate to yourself the concepts of PKC. To
make my example both intelligible and manage-
able, I will use small prime number (but please
remember that the real system is only secure be-
cause it uses huge, 100-digit long prime numbers
as factors.)

For the purpose of this simple demonstration, my
two “large” prime numbers will be

p = 11
q = 17

perEq.1, n = p× q
= 11× 17
= 187

perEq.2, d = [2(p− 1)× (q − 1) + 1]/3
= [20× 16 + 1]/3
= 321/3
= 107

To recapitulate:

Autumn 1997 19

Bob’s first prime number p = 11
Bob’s second prime number q = 17
Bob’s public encryption key n = 187
Bob’s private decryption key d = 107

The only thing Alice knows is that Bob’s public
key is 187, and that she must cube her clear-text
group and then “modulo 187” it. The result C
will be transmined to Bob, whose traffic, we will
assume, can be, somehow, intercepted by Vader-
the-Villain. Vader will thus know not only C which
he has just intercepted, but also n = 187 since this
is Bob’s public key, readily available to everyone.

Remember that, on the other hand, Bob knows
both Alice’s message as well as his own public and
private keys. To decrypt Alice’s message C, Bob
will have to calculate Cd mod n.

Let’s suppose that Alice wants to send Bob the let-
ter “A” (her initial) whose ASCII equivalent is 65.
Using Bob’s public key n = 187, she calculates

C = 653 mod 187
(65× 65× 65) mod 187
274625 mod 187
109

and she sends 109 to Bob.

Bob must now simply calculate 109107 mod 187 !
Hmmmmm, say. . .what? How specifically does
Bob calculate the 107th power of 109? I thought
you would never ask! There is a simple method
to do so, described in some detail in the Byte
1983 article, and known as the “Russian Peasant’s
method.” It is implemented in the short BASIC
program listed below. Anyway, amazingly enough,
109107 mod 187 = 65, the number Alice originally
wanted Bob to receive. Please note that Vader
cannot derive the value of 65 from 187 and 109,
the only two numbers he knows. Try it for your-
self, remembering that the clear text you want to
encrypt should be smaller than the public key you
use.

BASIC Programs

Here is a 6-line encryption program ENCRYPT.BAS

100 CLS’THIS IS A SIMPLE RSA ENCRYPTION PROGRAM, SEE BYTE JAN 83

110 INPUT "PLEASE ENTER THE PUBLIC KEY OF YOUR CORRESPONDENT";N

120 INPUT "NOW ENTER THE NUMBER YOU WANT TO ENCRYPT (0=END)";A

130 A1=A*A*A: A1=A1-INT(A1/N)*N’ CUBE OF (A) THEN MODULO N

140 PRINT "THE ENCRYPTED BLOCK IS"A1:PRINT

150 IF A=0 THEN END ELSE GOTO 120’ END, OR PLAY IT AGAIN SAM

Now for the corresponding decryption program DECRYPT.BAS

100 CLS’ this program decrypts rsa messages, see byte jan83

110 DEFDBL C,D,M,N’ DOUBLE PRECISION

120 INPUT "PLEASE ENTER YOUR PUBLIC KEY";N

130 INPUT "AND NOW YOUR PRIVATE KEY";D

140 INPUT "AND NOW THE RECEIVED CRYPTOGRAM BLOCK (TO EXIT, ENTER 0)";C

150 IF C=O THEN END’ EXIT THIS PROGRAM

160 GOSUB 190’ START DECRYPTING

170 PRINT "AND THE CLEAR TEXT IS";M:PRINT

180 GOTO 140’ AND AGAIN

190 D1=D: M=1’ RUSSIAN PEASANT METHOD

200 IF D1/2=INT(D1/2) GOTO 220’ SKIP IF D1 = EVEN

210 M=M*C: M=M-INT(M/N)*N’ M = (M*C) MODULO N

220 C=C*C: C=C-INT(C/N)*N’ C = (C*C) MODULO N

230 D1=INT(D1/2): IF D1>0 GOTO 200

240 RETURN

20 Computer Supplement 22

How does this magick work? Let me now explain
why and how the problem of efficiently raising a
huge number to a huge power can best be tack-
led by a computer. My approach is slightly differ-
ent from the Russian Peasant Method originally
described in the Byte article, and since I live in
Northern Virginia, I decided to name it the North-
ern Virginian Peasant Algorithm).

The Northern Virginia Peasant Algorithm

Firstly, computers use the binary system, in which
several operations can be performed with particu-
lar efficacy:

1. checking whether a number is even or odd
is determined by looking at the least signifi-
cant bit; if that bit = 0, the number is even,
and if that bit = 1, the number is odd.

2. multiplying a number by 2, which simply
means shifting everything one bit to the left
and making the new least-significant bit =
0.

3. dividing an even number by 2, by removing
the least significant bit and shifting every-
thing one bit to the right.

4. checking whether a number is > 0, by check-
ing the most significant bit.

Secondly, before we tackle the problem of raising a
number X to a power Y , let us first examine how a
computer can best be used to multiply efficiently a
number X by another number Y , i.e., X × Y . Let

us open three registers x, y, and z and load them
with the discrete values X, Y and 0 respectively.

Since we haven’t modified anything, it is certainly
true that

X × Y = (x× y) + z (Eqn. 3)

Now for our process:

1. First check that Y > 0 , then

2. if Y is even, we can replace the value in reg-
ister y by y/2 and the value in register x by
2x.

Again, we haven’t changed the original re-
lationship since we now have (2x× y/2) + z

which still satisfies equation 3.

3. if Y is odd, then we can replace the value in
register y by (y−1) and the value in register
z by (z+ x).

Equation 3 now becomes

X × Y = x× (y− 1) + (z+ x)
= (x× y)− x+ z+ x

= (x× y) + z

and our original relation still holds.

4. Now go back to (1) above and check again
if Y is > 0. Keep performing the steps just
described until Y = 0, at which time, stop!
The result of our operation is the value of
register z.

Example: to multiply 5 by 6, we will set the three registers x, y and z as follows: x = 5, y = 6, z = 0.

Is y=6>0 ? yes

Is 6 even ? yes, then replace y=6 by (6/2)=3 and replace x=5 by (5*2)=10

Is y=3>0 ? yes

Is y=3 even ? no, then replace y=3 by y=2 and z=0 by z=(0+10)

Is y=2>0 ? yes

Is y=2 even ? yes, then replace y=2 by y(2/2)=1 and x=10 by x=(10*2)=20

Is y=1 even ? no, then replace y=1 by y=0 and z=10 by z=z+x=(10+20)=30

Is y=0>0? no, then stop!

Result = (5*6) = value of register z = 30 (Answer)

Here is a short BASIC program I wrote to demonstrate the above Russian Peasant Method:

100 CLS:PRINT "MULTI.BAS, THE RUSSIAN PEASANT METHOD"

110 PRINT "TO MULTIPLY A NUMBER X BY ANOTHER NUMBER Y."

Autumn 1997 21

120 PRINT: INPUT "WHAT IS YOUR FIRST NUMBER (0=EXIT)";X

130 IF X=0 THEN END

140 INPUT "WHAT IS YOUR SECOND NUMBER ";Y

150 Z=0

160 IF Y>0 GOTO 170 ELSE GOTO 200

170 IF Y/2=INT(Y/2) GOTO 190’ IS Y EVEN?

180 Y=Y-1: Z=X+Z: GOTO 160’ IF Y IS ODD

190 X=X*2: Y=Y/2: GOTO 160’ IF Y IS EVEN

200 PRINT "THE ANSWER IS:"Z:PRINT:GOTO 120

Finally, here is the way to raise a number X to the Y th power. Again, let us create three registers x, y, and
z and load them with the values X, Y and Z. (Note that now Z = 1 and not 0 as in the above multiplication
method.) The relation between these three values is XY × Z.

Is Y>0 ? Then Y is either even or odd.

If Y is even, replace Y by Y/2,

Now replace X by X*2

Leave Z unmodified, and note that equation 4 still holds,

as X^Y = (X^2)^Y/2*Z = (X^Y)*Z

Is Y odd? Then replace Y by Y-1

Leave X unmodified

Now replace Z by Z*X

Note that equation 4 still holds, i.e.,

X^Y=X^(Y-1)*ZX=(X^Y)*(X^-1)*ZX=(X^Y)*Z

And go back to the first step above until Y=0

Example: to calculate 23, x = 2, y = 3, z = 1

is y=3 > 0 ? yes

is y=3 even ? no, then replace y=3 by (y-1)=2 and replace z=1 by z=2

is y=2 even ? yes, then replace y=2 by y=2/2=1 and replace x=2 by x^2=4

is y=1 even ? no, then replace y=1 by y=1-1=0 and replace z=2 by z=2x=2*4=8

is y=0 > 0 ? no, then stop!

Result = (2^3) = value of register Z = 8 (Answer)

I have modified the short BASIC program above to demonstrate what I have called the Northern Virginian
Peasant Method:

100 CLS:PRINT "EXPON.BAS IS THE NORTHERN VIRGINIAN PEASANT"

110 PRINT"METHOD USED TO RAISE A NUMBER X TO A POWER Y."

120 PRINT:INPUT "WHAT IS YOUR FIRST NUMBER (0=EXIT)";X

130 IF X=0 THEN END

140 INPUT "NOW ENTER THE EXPONENT";Y

150 Z=1

160 IF Y>0 GOTO 170 ELSE GOTO 200

170 IF Y/2=INT(Y/2) GOTO 190’ IS Y EVEN?

180 Y=Y-1: Z=Z*X: GOTO 160’ IF Y IS ODD

190 X=X*X: Y=Y/2: GOTO 160’ IF Y IS EVEN

200 PRINT "THE ANSWER IS:’Z:PRINT:GOTO 120

22 Computer Supplement 22

We have already established that the reason why
these methods are efficient is due to the fact that
they exploit the properties of binary arithmetic.
One only needs to perform as many steps N as the
power of 2 required to cover Y , i.e., N = log2Y .
Hence, since we always preserve the relationship
in Eqn. 3 or Eqn. 4, these are not mathematical
issues, but simply implementation ones.

Bibliography

• Beutelspacher, Albrecht. Cryptology , The Math-
ematical Association of America, 1994.

• Halsall, Fred. Data Communications, Computer
Networks and Open Systems, Addison Wesley,
London, 1992. pp.596-599.
• Kahn, David. The Code Breakers, Macmillan,
New York, 1967.
• Simmons, Gustavus, (Editor). Contemporary
Cryptology , IEEE Press, NY, 1992.
• Smith, John. Public Key Cryptography, Byte
Magazine, January 1983, pp. 198-216.
• Zimmermann, Philip R. The Official PGP User’s
Guide, The MIT Press, Cambridge, Mass. 1995.

ACA CD-ROM Compilation

The ACA CD-ROM compliation has been updated
and now contains more than 500 megabytes of
cryptography-related material, all uncompressed
and ready for use:

• The entire contents of the Crypto Drop Box,
totalling more than 300 megabytes of programs,
text files, and graphics gathered from the Krewe
and other sources. This includes more than 170
megabytes of word lists, pattern lists, and dictio-
naries; Enigma and Hagelin machine simulators;
implementations of PGP, TEX, and some programs
from Bruce Schneier’s book Applied Cryptography ;
statistics and analysis programs; and a number of
other files;

• The entire contents of the ACA Bulletin Board
system (Decode), including programs for running
secure audio and protecting hard drives;

• A variety of dictionaries and word lists gathered
from the Internet, split into two dozen directories
for different languages and categories;

• Grady Ward’s Moby Lexicon, including Moby
Words, Moby Hyphenator, Moby Part-of-Speech,
Moby Pronunciator, Moby Thesaurus, and Moby
Language. According to the compiler,

This includes SCRABBLE(R) lists,
the most comprehensive rhyming dic-
tionary in English, and a huge pro-
nouncing dictionary only dwarfed by
the million-entry thesaurus.

• Jargon, the Hacker’s Dictionary containing
relevant and historical entries for computer-
and programming-related subjects totalling 1.2
megabytes;

• Turing emulators and a tutorial;

• Cryptanalysis programs and files, including
crackers for Word, WordPerfect, and PKZip; and
Postscript files describing various attacks on mod-
ern cryptosystems;

The CD-ROM comes in IBM-PC readable format
and is available from:

Dan Veeneman

Post Office Box 2442

Columbia, Maryland 21045-1442

USA

Inquiries to dan@decode.com.

Autumn 1997 23

Tea and Sympathy
David Hamer (DAEDALUS)

TEA — The Electronic Alveary — and its compan-
ion program, SYMPATHY, were written by British
crossword constructor Ross Beresford, of Bryson
Ltd., to aid in the solution (TEA) and creation
(SYMPATHY) of crossword puzzles of varying styles.
While the latter may generate little or no excite-
ment among cryptology enthusiasts, the former,
together with its associated large (about 200,000
words/phrases) wordlist very well might !

TEA comes in two flavours - MS-DOS and MS-
Windows. While they both operate in similar fash-
ion, the Windows versions are much more power-
ful. The DOS version will no longer be supported
or developed by Bryson and is freeware. The Win-
dows 3.x and Windows 95 versions, (both v1.20,
dated November 2, 1996) which are shareware and
offer support to registered users, hold the promise
of future development. The following description
of the program will be limited to the Windows ver-
sions.

The program files come in compressed format as
TEAW1216.ZIP (1419037 bytes) for Windows 3.x;
TEAW1232.ZIP (1413955 bytes) for Windows 95.
Each must be uncompressed into a temporary di-
rectory on the hard drive. After decompression
you will have, in a little over 2 Megabytes:

ANSI.TSM ANSIACA.TSM

ANSIACCE.TSM ANSIALL.TSM

ANSICASE.TSM BALTIC .TSM

CENTEURO.TSM DEFAULT.TSM

ORDERING.WRI README

TEA.EXE (Win 3.X) TEA32.EXE (Win 95)

TEA.INI TEA.HLP

TEAW12.DOC TSBUILD.EXE

TSBUILD.HLP TURKISH.TSM

UKACD14.DOC WORDS.TSD

README gives detailed procedures for setting up TEA

in both the Windows 3.x and Windows 95 environ-
ments.

The included default wordlist is the UK Advanced
Cryptics Dictionary (v1.4, dated Feb. 11, 1996)
which, in the words of UKACD14.DOC...

....original basiswas a word list
of some 500,000 entries..... reduced
to a list of around 190,000 words by

eliminating entries that aren’t gener-
ally allowable in UK advanced cryptic
[crossword] puzzles.

TEA’s usage is fairly straightforward and well sup-
ported by the help files. For example: enter-
ing e.e..y will produce energy and several other
words with this pattern. Wild cards are accept-
able. Anagramming is done by preceding the sub-
ject word or phrase with ;: for example, ;diverse
produces derives, revised and deviser. With
appropriately configured input, TEA will answer
such questions as: “what words end in GRY?”;
“what words include a Q, an X and a Z?”; “what
words include all five vowels consecutively?”; and
more!

The UKACD contains, in addition to pattern words,
a large number of “pattern phrases” and the best
way to illustrate this is by example. If you enter
;pigslitteran — a concealed but anagrammed
clue from a recent Times Crossword — TEA pro-
duces ear-splitting, which fits the clue per-
fectly! Note that ;pigslitter.. would produce
the same result! Many other common (British)
phrases are included. Word/phrase lengths from 2
to 31 are included.

A major feature of TEA is its ability to work with
computerised dictionaries (I use the Concise Ox-
ford Dictionary) also running under Windows 3.x
or ’95. The procedure here is to start the dictio-
nary and minimise it in Windows. Then run TEA

— with any of its search options — to look for the
words under investigation. With the dictionary
‘running’ TEA has a “lookup” option so that you
may mark a word and get its definition directly
from the dictionary; then use any print, quotation
or thesaurus options normally available with that
dictionary. This feature is, of course, unavailable
when using the DOS version.

Sources:

• TEA is on the Crypto Drop Box [Ed: See the
next article for details on the CDB. DMV] as
TEAW1216.ZIP and TEAW1232.ZIP— the Windows
versions; and TEA101.ZIP — the MS-DOS version.
Shareware registration costs about US$30.

• Ross Beresford may be found at:
e-mail: ross@bryson.demon.co.uk
URL: http://www.compulink.co.uk/˜bryson
or by snail-mail:

24 Computer Supplement 22

Bryson Ltd.

10 Wagtail Close

Twyford

Reading RG10 9ED

United Kingdom

• The Concise Oxford Dictionary is part of The
Oxford Compendium, a Compact Disc ROM which
contains the Concise Oxford Dictionary , The Ox-
ford Thesaurus, The Oxford Dictionary of Quota-

tions; and The Oxford Dictionary of Modern Quo-
tations, and is available for about US$60 from

Lotus Development Corporation

300 River Park Drive

North Reading, MA 01864

The Concise Oxford Dictionary alone is available
on diskette for considerably less.

ACA AND THE INTERNET

There are a number of resources on the Internet of
interest to members of the ACA. Besides the innu-
merable web pages devoted to cryptography, the
following items are directly related to the ACA:

• The Crypto Drop Box (CBD) is a repository
for programs, files, and other helpful crypto aids.
It resides on a server at the University of North
Dakota and is hosted there thanks to NORTH
DECODER (Jerry Metzger). It may be accessed
at the following Uniform Resource Locator (URL):
http://www.und.nodak.edu/org/crypto/crypto

Questions about the CDB may be directed to
metzger@sage.und.nodak.edu.

• DABASAP (Greg Griffin) is the contact point
for the ACA Mailing List. A single electronic mail
message sent to the list will be distributed to all of
the list subscribers, providing a convenient means
for keeping in touch and making collective use of
the Krewe’s knowledge and experience. To sub-
scribe, send an e-mail message to DABASAP at
vlad@holonet.net asking for current instructions.

About This Issue

This issue was produced on an IBM-compatible
486DX/66 under MS-DOS. The vi editor supplied
with the Mortice Kern Systems (MKS) toolkit
was used to enter and edit the text of a LaTEX-
formatted file. EmTEX processed the .TEX file,
with the result printed on a Hewlett-Packard
LaserJet IIIp.

After five years and several thousand impressions
my faithful LaserJet IIIp had to go in for service re-
cently for a replacement fuser. I’m still not sure if

it was old age or the aftereffects of a transparency
that got wrapped around the fuser a few months
ago, but $200 an an interminable delay later I’m
able to print again.

I’ve also added an Iomega ZIP drive to the col-
lection of computer equipment, joining the HP
4020i CD-ROM Writer as a means of transport-
ing larger quantities of data. This was a big help
in transporting the large download data sets from
the Crypto Drop Box.

